BCRC Strain Collection Catalog & Shopping Cart

  Home / BCRC Content / 11053 / 

Return

  Research Article

The information shown in this page was generated using the cross-referenced linkage within public domain database between their strains and BCRC related strains. Usually the information provided from public domain databases varies with different confidences and errors, BCRC provides the related information here at best effort, but BCRC doesn't take the responsibility about the correctness of the information provided here.

1. Taguchi  H, Ohta  T,     ( 1992 )

Unusual amino acid substitution in the anion-binding site of Lactobacillus plantarum non-allosteric L-lactate dehydrogenase.

European journal of biochemistry 209 (3)
PMID : 1425707  :   DOI  :   10.1111/j.1432-1033.1992.tb17373.x    
Abstract >>
In Lactobacillus plantarum non-allosteric L-lactate dehydrogenase (L-LDH), the highly conserved His188 residue, which is involved in the binding of an allosteric effector, fructose 1,6-bisphosphate [Fru(1,6)P2], in allosteric L-LDH is uniquely substituted by an Asp. The mutant L. plantarum L-LDH, in which Asp188 is replaced by a His, showed essentially the same Fru(1,6)P2-independent catalytic activity as the wild-type enzyme, except that the Km and Vmax values were slightly decreased. However, the addition of Fru(1,6)P2 induced significant thermostabilization of the mutant enzyme, as in the case of many allosteric L-LDHs, while Fru(1,6)P2 showed no significant effect on the stability of the wild-type enzyme, indicating that only the single-point mutation, G-->C, sufficiently induces the Fru(1,6)P2-binding ability of L. plantarum L-LDH. The mutant enzyme showed higher thermostability than the wild-type enzyme in the presence of Fru(1,6)P2. In the absence of Fru(1,6)P2, on the other hand, the mutant enzyme was more labile below 65 degrees C but more stable above 70 degrees C.
KeywordMeSH Terms
2. Leer  RJ, van Luijk  N, Posno  M, Pouwels  PH,     ( 1992 )

Structural and functional analysis of two cryptic plasmids from Lactobacillus pentosus MD353 and Lactobacillus plantarum ATCC 8014.

Molecular & general genetics : MGG 234 (2)
PMID : 1387195  :   DOI  :   10.1007/bf00283847    
Abstract >>
The DNA sequences of a 2.4 kb plasmid (p353-2) from Lactobacillus pentosus MD353 and a 1.9 kb plasmid (p8014-2) from Lactobacillus plantarum ATCC 8014 show 81.5% overall similarity. Both plasmids carry elements (replication protein gene, plus-origin and minus-origin of replication), which are typical of plasmids that replicate via a rolling-circle mechanism of replication (RCR). Direct evidence for an RCR mechanism was obtained by showing the accumulation of single-stranded plasmid intermediates in the presence of rifampicin. A minus-origin of replication was defined for plasmids p353-2 and p8014-2 based on DNA sequence analysis and on its ability to convert single-stranded into double-stranded plasmid DNA. Plasmids pLPE323, pLPE350 and pLPC37 that are derived from the p353-2 or p8014-2 replicon are structurally and segregationally stable in L. pentosus MD353, L. plantarum ATCC 8014 and in Lactobacillus casei ATCC 393. The presence of Escherichia coli or lambda DNA fragments in vectors derived from p353-2 or p8014-2 does not affect the structural stability but results in segregational instability of the vectors. The instability increases with increasing size of the inserted DNA fragment. Since vectors based on these replicons can be efficiently propagated in a wide variety of Lactobacillus species, they are highly suitable for cloning and expression of foreign DNA in Lactobacillus, provided that selective pressure is applied.
KeywordMeSH Terms
3. Chavagnat  F, Haueter  M, Jimeno  J, Casey  MG,     ( 2002 )

Comparison of partial tuf gene sequences for the identification of lactobacilli.

FEMS microbiology letters 217 (2)
PMID : 12480101  :   DOI  :   10.1111/j.1574-6968.2002.tb11472.x    
Abstract >>
Comparative analysis of partial tuf sequences was evaluated for the identification and differentiation of lactobacilli. Comparison of the amino acid sequences allowed differentiation between species and also between the subspecies of Lactobacillus delbrueckii. The nucleotide sequence comparison allowed differentiation between other subspecies and between some strains. Lactobacilli from several collections and isolates from dairy samples were clearly identified by comparison of short tuf sequences with those of the type strains. In evaluating the taxonomy of the Lactobacillus casei-related taxa, different tuf amino acid signatures are in favour of a classification into three distinct species. The type strain designation for the L. casei species is discussed.
KeywordMeSH Terms
Bacterial Proteins
Genes, Bacterial
4. Uchikoba  H, Fushinobu  S, Wakagi  T, Konno  M, Taguchi  H, Matsuzawa  H,     ( 2002 )

Crystal structure of non-allosteric L-lactate dehydrogenase from Lactobacillus pentosus at 2.3 A resolution: specific interactions at subunit interfaces.

Proteins 46 (2)
PMID : 11807949  :  
Abstract >>
L-Lactate dehydrogenase (LDH) from Lactobacillus pentosus is a non-allosteric enzyme, which shows, however, high sequence similarity to allosteric LDHs from certain bacteria. To elucidate the structural basis of the absence of allostery of L. pentosus LDH (LPLDH), we determined the crystal structure of LPLDH at 2.3 A resolution. Bacterial LDHs are tetrameric enzymes composed of identical subunits and exhibit 222 symmetry. The quaternary structure of LPLDH was similar to the active conformation of allosteric LDHs. Structural analysis revealed that the subunit interfaces of LPLDH are optimized mainly through hydrophilic interactions rather than hydrophobic interactions, compared with other LDHs. The subunit interfaces of LPLDH are more specifically stabilized by increased numbers of intersubunit salt bridges and hydrogen bonds, and higher geometrical complementarity. Such high specificity at the subunit interfaces should hinder the rearrangement of the quaternary structure needed for allosteric regulation and thus explain the "non-allostery" of LPLDH.
KeywordMeSH Terms
5. Posthuma  CC, Bader  R, Engelmann  R, Postma  PW, Hengstenberg  W, Pouwels  PH,     ( 2002 )

Expression of the xylulose 5-phosphate phosphoketolase gene, xpkA, from Lactobacillus pentosus MD363 is induced by sugars that are fermented via the phosphoketolase pathway and is repressed by glucose mediated by CcpA and the mannose phosphoenolpyruvate phosphotransferase system.

Applied and environmental microbiology 68 (2)
PMID : 11823225  :   DOI  :   10.1128/aem.68.2.831-837.2002     PMC  :   PMC126734    
Abstract >>
Purification of xylulose 5-phosphate phosphoketolase (XpkA), the central enzyme of the phosphoketolase pathway (PKP) in lactic acid bacteria, and cloning and sequence analysis of the encoding gene, xpkA, from Lactobacillus pentosus MD363 are described. xpkA encodes a 788-amino-acid protein with a calculated mass of 88,705 Da. Expression of xpkA in Escherichia coli led to an increase in XpkA activity, while an xpkA knockout mutant of L. pentosus lost XpkA activity and was not able to grow on energy sources that are fermented via the PKP, indicating that xpkA encodes an enzyme with phosphoketolase activity. A database search revealed that there are high levels of similarity between XpkA and a phosphoketolase from Bifidobacterium lactis and between XpkA and a (putative) protein present in a number of evolutionarily distantly related organisms (up to 54% identical residues). Expression of xpkA in L. pentosus was induced by sugars that are fermented via the PKP and was repressed by glucose mediated by carbon catabolite protein A (CcpA) and by the mannose phosphoenolpyruvate phosphotransferase system. Most of the residues involved in correct binding of the cofactor thiamine pyrophosphate (TPP) that are conserved in transketolase, pyruvate decarboxylase, and pyruvate oxidase were also conserved at a similar position in XpkA, implying that there is a similar TPP-binding fold in XpkA.
KeywordMeSH Terms
Bacterial Proteins
Gene Expression Regulation, Bacterial
6. Torriani  S, Felis  GE, Dellaglio  F,     ( 2001 )

Differentiation of Lactobacillus plantarum, L. pentosus, and L. paraplantarum by recA gene sequence analysis and multiplex PCR assay with recA gene-derived primers.

Applied and environmental microbiology 67 (8)
PMID : 11472918  :   DOI  :   10.1128/AEM.67.8.3450-3454.2001     PMC  :   PMC93042    
Abstract >>
In this study, we succeeded in differentiating Lactobacillus plantarum, Lactobacillus pentosus, and Lactobacillus paraplantarum by means of recA gene sequence comparison. Short homologous regions of about 360 bp were amplified by PCR with degenerate consensus primers, sequenced, and analyzed, and 322 bp were considered for the inference of phylogenetic trees. Phylograms, obtained by parsimony, maximum likelihood, and analysis of data matrices with the neighbor-joining model, were coherent and clearly separated the three species. The validity of the recA gene and RecA protein as phylogenetic markers is discussed. Based on the same sequences, species-specific primers were designed, and a multiplex PCR protocol for the simultaneous distinction of these bacteria was optimized. The sizes of the amplicons were 318 bp for L. plantarum, 218 bp for L. pentosus, and 107 bp for L. paraplantarum. This strategy permitted the unambiguous identification of strains belonging to L. plantarum, L. pentosus, and L. paraplantarum in a single reaction, indicating its applicability to the speciation of isolates of the L. plantarum group.
KeywordMeSH Terms
7. Hillen  W, Mahr  K,     ( 2000 )

Carbon catabolite repression in Lactobacillus pentosus: analysis of the ccpA region.

Applied and environmental microbiology 66 (1)
PMID : 10618236  :   DOI  :   10.1128/aem.66.1.277-283.2000     PMC  :   PMC91818    
Abstract >>
The catabolite control protein CcpA is a central regulator in low-G+C-content gram-positive bacteria. It confers carbon catabolite repression to numerous genes required for carbon utilization. It also operates as a transcriptional activator of genes involved in diverse phenomena, such as glycolysis and ammonium fixation. We have cloned the ccpA region of Lactobacillus pentosus. ccpA encodes a protein of 336 amino acids exhibiting similarity to CcpA proteins of other bacteria and to proteins of the LacI/GalR family of transcriptional regulators. Upstream of ccpA was found an open reading frame with similarity to the pepQ gene, encoding a prolidase. Primer extension experiments revealed two start sites of transcription for ccpA. In wild-type cells grown on glucose, mRNA synthesis occurred only from the promoter proximal to ccpA. In a ccpA mutant strain, both promoters were used, with increased transcription from the distant promoter, which overlaps a presumptive CcpA binding site called cre (for catabolite responsive element). This suggests that expression of ccpA is autoregulated. Determination of the expression levels of CcpA in cells grown on repressing and nonrepressing carbon sources revealed that the amounts of CcpA produced did not change significantly, leading to the conclusion that the arrangement of two promoters may ensure constant expression of ccpA under various environmental conditions. A comparison of the genetic structures of ccpA regions revealed that lactic acid bacteria possess the gene order pepQ-ccpA-variable while the genetic structure in bacilli and Staphylococcus xylosus is aroA-ccpA-variable-acuC.
KeywordMeSH Terms
Bacterial Proteins
Gene Expression Regulation, Bacterial
8. Leer  RJ, Posno  M, Pouwels  PH, Lokman  BC, van Santen  P, Verdoes  JC, Krüse  J,     ( 1991 )

Organization and characterization of three genes involved in D-xylose catabolism in Lactobacillus pentosus.

Molecular & general genetics : MGG 230 (1��2��)
PMID : 1660563  :   DOI  :   10.1007/bf00290664    
Abstract >>
A cluster of three genes involved in D-xylose catabolism (viz. xylose genes) in Lactobacillus pentosus has been cloned in Escherichia coli and characterized by nucleotide sequence analysis. The deduced gene products show considerable sequence similarity to a repressor protein involved in the regulation of expression of xylose genes in Bacillus subtilis (58%), to E. coli and B. subtilis D-xylose isomerase (68% and 77%, respectively), and to E. coli D-xylulose kinase (58%). The cloned genes represent functional xylose genes since they are able to complement the inability of a L. casei strain to ferment D-xylose. NMR analysis confirmed that 13C-xylose was converted into 13C-acetate in L. casei cells transformed with L. pentosus xylose genes but not in untransformed L. casei cells. Comparison with the aligned amino acid sequences of D-xylose isomerases of different bacteria suggests that L. pentosus D-xylose isomerase belongs to the same similarity group as B. subtilis and E. coli D-xylose isomerase and not to a second similarity group comprising D-xylose isomerases of Streptomyces violaceoniger, Ampullariella sp. and Actinoplanes. The organization of the L. pentosus xylose genes, 5'-xylR (1167 bp, repressor) - xylA (1350 bp, D-xylose isomerase) - xylB (1506 bp, D-xylulose kinase) - 3' is similar to that in B. subtilis. In contrast to B. subtilis xylR, L. pentosus xylR is transcribed in the same direction as xylA and xylB.
KeywordMeSH Terms
Aldose-Ketose Isomerases
Genes, Bacterial
Phosphotransferases (Alcohol Group Acceptor)
9. Bringel  F, Castioni  A, Olukoya  DK, Felis  GE, Torriani  S, Dellaglio  F,     ( 2005 )

Lactobacillus plantarum subsp. argentoratensis subsp. nov., isolated from vegetable matrices.

International journal of systematic and evolutionary microbiology 55 (Pt 4)
PMID : 16014493  :   DOI  :   10.1099/ijs.0.63333-0    
Abstract >>
Fourteen strains isolated from vegetable sources and identified as belonging to Lactobacillus plantarum presented an atypical pattern of amplification with a species-specific multiplex-PCR assay. Phylogenetic analysis of two protein-encoding genes, recA (encoding the recombinase A protein) and cpn60 (encoding the GroEL chaperonin), as well as phenotypic and genomic traits revealed a homogeneous group of very closely related strains for which subspecies status is proposed, with the name Lactobacillus plantarum subsp. argentoratensis. The type strain is DKO 22(T) (=CIP 108320(T)=DSM 16365(T)).
KeywordMeSH Terms
10. Jørgensen  F, Hansen  OC, Stougaard  P,     ( 2004 )

Enzymatic conversion of D-galactose to D-tagatose: heterologous expression and characterisation of a thermostable L-arabinose isomerase from Thermoanaerobacter mathranii.

Applied microbiology and biotechnology 64 (6)
PMID : 15168095  :   DOI  :   10.1007/s00253-004-1578-6    
Abstract >>
The ability to convert D-galactose into D-tagatose was compared among a number of bacterial L-arabinose isomerases (araA). One of the most efficient enzymes, from the anaerobic thermophilic bacterium Thermoanaerobacter mathranii, was produced heterologously in Escherichia coli and characterised. Amino acid sequence comparisons indicated that this enzyme is only distantly related to the group of previously known araA sequences in which the sequence similarity is evident. The substrate specificity and the Michaelis-Menten constants of the enzyme determined with L-arabinose, D-galactose and D-fucose also indicated that this enzyme is an unusual, versatile L-arabinose isomerase which is able to isomerise structurally related sugars. The enzyme was immobilised and used for production of D-tagatose at 65 degrees C. Starting from a 30% solution of D-galactose, the yield of D-tagatose was 42% and no sugars other than D-tagatose and D-galactose were detected. Direct conversion of lactose to D-tagatose in a single reactor was demonstrated using a thermostable beta-galactosidase together with the thermostable L-arabinose isomerase. The two enzymes were also successfully combined with a commercially available glucose isomerase for conversion of lactose into a sweetening mixture comprising lactose, glucose, galactose, fructose and tagatose.
KeywordMeSH Terms
11. Huang  CH, Lee  FL, Liou  JS,     ( 2010 )

Rapid discrimination and classification of the Lactobacillus plantarum group based on a partial dnaK sequence and DNA fingerprinting techniques.

Antonie van Leeuwenhoek 97 (3)
PMID : 20039128  :   DOI  :   10.1007/s10482-009-9409-5    
Abstract >>
The Lactobacillus plantarum group comprises five very closely related species. Some species of this group are considered to be probiotic and widely applied in the food industry. In this study, we compared the use of two different molecular markers, the 16S rRNA and dnaK gene, for discriminating phylogenetic relationships amongst L. plantarum strains using sequencing and DNA fingerprinting. The average sequence similarity for the dnaK gene (89.2%) among five type strains was significantly less than that for the 16S rRNA (99.4%). This result demonstrates that the dnaK gene sequence provided higher resolution than the 16S rRNA and suggests that the dnaK could be used as an additional phylogenetic marker for L. plantarum. Species-specific profiles of the Lactobacillus strains were obtained with RAPD and RFLP methods. Our data indicate that phylogenetic relationships between these strains are easily resolved using sequencing of the dnaK gene or DNA fingerprinting assays.
KeywordMeSH Terms
Polymorphism, Genetic
12. Taguchi  H, Ohta  T,     ( 1991 )

D-lactate dehydrogenase is a member of the D-isomer-specific 2-hydroxyacid dehydrogenase family. Cloning, sequencing, and expression in Escherichia coli of the D-lactate dehydrogenase gene of Lactobacillus plantarum.

The Journal of biological chemistry 266 (19)
PMID : 1840590  :  
Abstract >>
The gene encoding D-lactate dehydrogenase (D-lactate: NAD+ oxidoreductase, EC 1.1.1.28) of Lactobacillus plantarum has been sequenced, and expressed in Escherichia coli cells with an inducible expression plasmid, in which the 5'-noncoding region of the gene was replaced with the tac promoter. Comparison of the sequence of D-lactate dehydrogenase with L-lactate dehydrogenases, including the L. plantarum L-lactate dehydrogenase, showed no significant homology. In contrast, the D-lactate dehydrogenase is homologous to E. coli D-3-phosphoglycerate dehydrogenase and Lactobacillus casei D-2-hydroxyisocaproate dehydrogenase. This indicates that D-lactate dehydrogenase is a member of a new family of 2-hydroxyacid dehydrogenases recently proposed, being distinct from L-lactate dehydrogenase and L-malate dehydrogenase, and strongly suggests that the new family consists of D-isomer-stereospecific enzymes. In the reductive reaction, the enzyme showed a broad substrate specificity, although pyruvate was the most favorable of all 2-ketocarboxylic acids tested. In particular, hydroxypyruvate is effectively reduced by the enzyme, the reaction rate, and Km value being comparable to those in the case of pyruvate, indicating that the enzyme has not only D-lactate dehydrogenase activity but also D-glycerate dehydrogenase activity. The conserved residues in this family appear to be the residues involved in the substrate binding and the catalytic reaction, and thus to be targets for site-directed mutagenesis.
KeywordMeSH Terms
Lactate Dehydrogenases
Multigene Family
13. Naser  SM, Dawyndt  P, Hoste  B, Gevers  D, Vandemeulebroecke  K, Cleenwerck  I, Vancanneyt  M, Swings  J,     ( 2007 )

Identification of lactobacilli by pheS and rpoA gene sequence analyses.

International journal of systematic and evolutionary microbiology 57 (Pt 12)
PMID : 18048724  :   DOI  :   10.1099/ijs.0.64711-0    
Abstract >>
The aim of this study was to evaluate the use of the phenylalanyl-tRNA synthase alpha subunit (pheS) and the RNA polymerase alpha subunit (rpoA) partial gene sequences for species identification of members of the genus Lactobacillus. Two hundred and one strains representing the 98 species and 17 subspecies were examined. The pheS gene sequence analysis provided an interspecies gap, which in most cases exceeded 10 % divergence, and an intraspecies variation of up to 3 %. The rpoA gene sequences revealed a somewhat lower resolution, with an interspecies gap normally exceeding 5 % and an intraspecies variation of up to 2 %. The combined use of pheS and rpoA gene sequences offers a reliable identification system for nearly all species of the genus Lactobacillus. The pheS and rpoA gene sequences provide a powerful tool for the detection of potential novel Lactobacillus species and synonymous taxa. In conclusion, the pheS and rpoA gene sequences can be used as alternative genomic markers to 16S rRNA gene sequences and have a higher discriminatory power for reliable identification of species of the genus Lactobacillus.
KeywordMeSH Terms
14. Blaiotta  G, Fusco  V, Ercolini  D, Aponte  M, Pepe  O, Villani  F,     ( 2008 )

Lactobacillus strain diversity based on partial hsp60 gene sequences and design of PCR-restriction fragment length polymorphism assays for species identification and differentiation.

Applied and environmental microbiology 74 (1)
PMID : 17993558  :   DOI  :   10.1128/AEM.01711-07     PMC  :   PMC2223197    
Abstract >>
A phylogenetic tree showing diversities among 116 partial (499-bp) Lactobacillus hsp60 (groEL, encoding a 60-kDa heat shock protein) nucleotide sequences was obtained and compared to those previously described for 16S rRNA and tuf gene sequences. The topology of the tree produced in this study showed a Lactobacillus species distribution similar, but not identical, to those previously reported. However, according to the most recent systematic studies, a clear differentiation of 43 single-species clusters was detected/identified among the sequences analyzed. The slightly higher variability of the hsp60 nucleotide sequences than of the 16S rRNA sequences offers better opportunities to design or develop molecular assays allowing identification and differentiation of either distant or very closely related Lactobacillus species. Therefore, our results suggest that hsp60 can be considered an excellent molecular marker for inferring the taxonomy and phylogeny of members of the genus Lactobacillus and that the chosen primers can be used in a simple PCR procedure allowing the direct sequencing of the hsp60 fragments. Moreover, in this study we performed a computer-aided restriction endonuclease analysis of all 499-bp hsp60 partial sequences and we showed that the PCR-restriction fragment length polymorphism (RFLP) patterns obtainable by using both endonucleases AluI and TacI (in separate reactions) can allow identification and differentiation of all 43 Lactobacillus species considered, with the exception of the pair L. plantarum/L. pentosus. However, the latter species can be differentiated by further analysis with Sau3AI or MseI. The hsp60 PCR-RFLP approach was efficiently applied to identify and to differentiate a total of 110 wild Lactobacillus strains (including closely related species, such as L. casei and L. rhamnosus or L. plantarum and L. pentosus) isolated from cheese and dry-fermented sausages.
KeywordMeSH Terms
Polymorphism, Restriction Fragment Length
15. Chaikaew  S, Baipong  S, Sone  T, Kanpiengjai  A, Chui-Chai  N, Asano  K, Khanongnuch  C,     ( 2017 )

Diversity of lactic acid bacteria from Miang, a traditional fermented tea leaf in northern Thailand and their tannin-tolerant ability in tea extract.

Journal of microbiology (Seoul, Korea) 55 (9)
PMID : 28865074  :   DOI  :   10.1007/s12275-017-7195-8    
Abstract >>
The microbiota of lactic acid bacteria (LAB) in thirty-five samples of Miang, a traditional fermented tea leaf product, collected from twenty-two different regions of eight provinces in upper northern Thailand was revealed through the culture-dependent technique. A total of 311 presumptive LAB strains were isolated and subjected to clustering analysis based on repetitive genomic element-PCR (rep-PCR) fingerprinting profiles. The majority of the strains belonged to the Lactobacillus genera with an overwhelming predominance of the Lb. plantarum group. Further studies of species-specific PCR showed that 201 of 252 isolates in the Lb. plantarum group were Lb. plantarum which were thus considered as the predominant LAB in Miang, while the other 51 isolates belonged to Lb. pentosus. In contrast to Lb. plantarum, there is a lack of information on the tannase gene and the tea tannin-tolerant ability of Lb. pentosus. Of the 51 Lb. pentosus isolates, 33 were found to harbor the genes encoding tannase and shared 93-99% amino acid identity with tannase obtained from Lb. pentosus ATCC 8041T. Among 33 tannase gene-positive isolates, 23 isolates exhibited high tannin- tolerant capabilities when cultivated on de Man Rogosa and Sharpe agar-containing bromocresol purple (0.02 g/L, MRS-BCP) supplemented with 20% (v/v) crude tea extract, which corresponded to 2.5% (w/v) tannins. These Lb. pentosus isolates with high tannin-tolerant capacity are expected to be the high potential strains for functional tannase production involved in Miang fermentation as they will bring about certain benefits and could be used to improve the fermentation of tea products.
KeywordMeSH Terms
Miang
diversity
fermented tea leaves
lactic acid bacteria
repetitive-PCR
tannin-tolerant lactic acid bacteria
Genetic Variation
16. Zhang  JD, Cui  ZM, Fan  XJ, Wu  HL, Chang  HH,     ( 2016 )

Cloning and characterization of two distinct water-forming NADH oxidases from Lactobacillus pentosus for the regeneration of NAD.

Bioprocess and biosystems engineering 39 (4)
PMID : 26801669  :   DOI  :   10.1007/s00449-016-1542-8    
Abstract >>
Two uncharacterized nicotinamide adenine dinucleotide (NADH) oxidases (named as LpNox1, LpNox2) from Lactobacillus pentosus ATCC 8041 were cloned and overexpressed in Escherichia coli BL21 (DE3). The sequence analysis revealed that the two enzymes are water-forming Noxs with 64 % and 52 % identity to LbNox from Lactobacillus brevis DSM 20054. The optimal pH and temperature of the purified LpNox1 and LpNox2 were 7.0 and 8.0 and 35 and 40 �XC, respectively, with K M of 99.0 �gM (LpNox1) and 27.6 �gM (LpNox2), and yielding catalytic efficiency k cat/K M of 1.0 and 0.2 �gM(-1) s(-1), respectively. Heat inactivation studies revealed that the two enzymes are relatively instable. The application of LpNox1 for the regeneration of NAD(+) was demonstrated by coupling with a glycerol dehydrogenase-catalyzed oxidation of glycerol to 1,3-dihydroxyacetone. The characteristics of the LpNox1 could prove to be of interest in industrial application such as NAD(+) regeneration in dehydrogenase-catalyzed oxidations.
KeywordMeSH Terms
Cloning
Cofactor regeneration
Lactobacillus pentosus
NADH oxidase
Water forming
Bacterial Proteins
Lactobacillus pentosus
NADPH Oxidases
17. Varcamonti  M, Abu Sayem  SM, Zotta  T, Ricciardi  A, Ianniello  RG, Guidone  A,     ( 2012 )

Genotypic diversity of stress response in Lactobacillus plantarum, Lactobacillus paraplantarum and Lactobacillus pentosus.

International journal of food microbiology 157 (2)
PMID : 22704047  :   DOI  :   10.1016/j.ijfoodmicro.2012.05.018    
Abstract >>
Lactobacillus plantarum, Lactobacillus pentosus and Lactobacillus paraplantarum are three closely related species which are widespread in food and non-food environments, and are important as starter bacteria or probiotics. In order to evaluate the phenotypic diversity of stress tolerance in the L. plantarum group and the ability to mount an adaptive heat shock response, the survival of exponential and stationary phase and of heat adapted exponential phase cells of six L. plantarum subsp. plantarum, one L. plantarum subsp. argentoratensis, one L. pentosus and two L. paraplantarum strains selected in a previous work upon exposure to oxidative, heat, detergent, starvation and acid stresses was compared to that of the L. plantarum WCFS1 strain. Furthermore, to evaluate the genotypic diversity in stress response genes, ten genes (encoding for chaperones DnaK, GroES and GroEL, regulators CtsR, HrcA and CcpA, ATPases/proteases ClpL, ClpP, ClpX and protease FtsH) were amplified using primers derived from the WCFS1 genome sequence and submitted to restriction with one or two endonucleases. The results were compared by univariate and multivariate statistical methods. In addition, the amplicons for hrcA and ctsR were sequenced and compared by multiple sequence alignment and polymorphism analysis. Although there was evidence of a generalized stress response in the stationary phase, with increase of oxidative, heat, and, to a lesser extent, starvation stress tolerance, and for adaptive heat stress response, with increased tolerance to heat, acid and detergent, different growth phases and adaptation patterns were found. Principal component analysis showed that while heat, acid and detergent stresses respond similarly to growth phase and adaptation, tolerance to oxidative and starvation stresses implies completely unrelated mechanisms. A dendrogram obtained using the data from multilocus restriction typing (MLRT) of stress response genes clearly separated two groups of L. plantarum strains from the other species but there was no correlation between genotypic grouping and grouping obtained on the basis of the stress response pattern, nor with the phylograms obtained from hrcA and ctsR sequences. Differences in sequence in L. plantarum strains were mostly due to single nucleotide polymorphisms with a high frequency of synonymous nucleotide changes and, while hrcA was characterized by an excess of low frequency polymorphism, very low diversity was found in ctsR sequences. Sequence alignment of hrcA allowed a correct discrimination of the strains at the species level, thus confirming the relevance of stress response genes for taxonomy.
KeywordMeSH Terms
Genotype
18.     ( 1996 )

Insights into substrate binding by D-2-ketoacid dehydrogenases from the structure of Lactobacillus pentosus D-lactate dehydrogenase.

Structure (London, England : 1993) 4 (4)
PMID : 8740366  :  
Abstract >>
D-Lactate dehydrogenases (D-LDHs) and L-lactate dehydrogenases (L-LDHs) catalyze a reaction differing only in the chirality of the product. Both enzymes utilize the same kind of amino acid side chains in substrate binding and catalysis. Models based on D-LDH-related enzymes propose that these side chains assume identical roles in both enzymes with their active sites related by a simple geometrical relationship such as a mirror plane. The crystal structure of the homodimeric D-LDH from Lactobacillus pentosus has been determined to 2.6 A resolution by multiple isomorphous replacement methods and the resulting molecular model refined to an R-factor of 19.1%. Topologically, the enzyme is closely related to other D-2-ketoacid dehydrogenase enzymes. Each subunit comprises two domains enclosing a deep cleft containing the active site. Substrate binding and domain closure have been modelled. Comparison of the D-LDH structure with other members of the protein family and with the L-specific enzyme has confirmed that no overall structural relationship exists between the L-LDH and D-LDH enzymes - they belong to distinct protein classes. The small size of the ketoacid substrate and the very restricted number of functionally appropriate side chains will constrain the choice of amino acids and their placement in the active site. Our models imply that although the same kinds of amino acids are involved in substrate binding their exact chemical role might differ in the two dehydrogenases.
KeywordMeSH Terms
19. Horie  M, Sato  H, Tada  A, Nakamura  S, Sugino  S, Tabei  Y, Katoh  M, Toyotome  T,     ( 2019 )

Regional characteristics of Lactobacillus plantarum group strains isolated from two kinds of Japanese post-fermented teas, Ishizuchi-kurocha and Awa-bancha.

Bioscience of microbiota, food and health 38 (1)
PMID : 30705798  :   DOI  :   10.12938/bmfh.18-005     PMC  :   PMC6343053    
Abstract >>
Properties of Lactobacillus plantarum group strains isolated from two kinds of Japanese post-fermented teas, Ishizuchi-kurocha and Awa-bancha, were compared. Although lactic acid bacteria isolated from the fermented teas were identified as L. plantarum via homology comparison of 16S ribosomal RNA gene sequences, classification of L. plantarum based on ribosomal proteins showed that the strains isolated from Ishizuchi-kurocha and Awa-bancha were different. According to classification by the ribosomal protein typing, Ishizuchi-kurocha-derived strains belong to the same group as L. plantarum subsp. plantarum JCM 1149T. Awa-bancha-derived strains were assigned to a different group. This pattern was also applicable to strains isolated more than 10 years ago. A further analysis based on recA and a dnaK gene showed that Awa-bancha-derived strains were closely related to L. pentosus. The interactions with cultured cells were different between strain JCM 1149T and the Ishizuchi-kurocha-derived strains. The Ishizuchi-kurocha-derived strains showed strong adhesion to Caco-2 cells. In contrast, strain JCM 1149T and the Awa-bancha-derived strains hardly adhered to Caco-2 cells. According to the ribosomal protein typing, sugar utilization, and interaction with Caco-2 cells, although these properties were dependent on the strain strictly speaking, the L. plantarum group strains in this study can be subdivided into two groups: (1) type strain JCM 1149T and Ishizuchi-kurocha-derived strains and (2) Awa-bancha-derived strains. A regionally unique microorganism may persist in each traditional fermented drink.
KeywordMeSH Terms
Lactobacillus pentosus
Lactobacillus plantarum
postfermented tea
ribosomal protein
20.     ( 1998 )

Functional expression in Lactobacillus plantarum of xylP encoding the isoprimeverose transporter of Lactobacillus pentosus.

Journal of bacteriology 180 (15)
PMID : 9683504  :   PMC  :   PMC107391    
Abstract >>
The xylP gene of Lactobacillus pentosus, the first gene of the xylPQR operon, was recently found to be involved in isoprimeverose metabolism. By expression of xylP on a multicopy plasmid in Lactobacillus plantarum 80, a strain which lacks active isoprimeverose and D-xylose transport activities, it was shown that xylP encodes a transporter. Functional expression of the XylP transporter was shown by uptake of isoprimeverose in L. plantarum 80 cells, and this transport was driven by the proton motive force generated by malolactic fermentation. XylP was unable to catalyze transport of D-xylose.
KeywordMeSH Terms
Bacterial Proteins
Symporters
21.     ( 1998 )

Cloning, sequence analysis, and characterization of the genes involved in isoprimeverose metabolism in Lactobacillus pentosus.

Journal of bacteriology 180 (9)
PMID : 9573180  :   PMC  :   PMC107170    
Abstract >>
Two genes, xylP and xylQ, from the xylose regulon of Lactobacillus pentosus were cloned and sequenced. Together with the repressor gene of the regulon, xylR, the xylPQ genes form an operon which is inducible by xylose and which is transcribed from a promoter located 145 bp upstream of xylP. A putative xylR binding site (xylO) and a cre-like element, mediating CcpA-dependent catabolite repression, were found in the promoter region. L. pentosus mutants in which both xylP and xylQ (LPE1) or only xylQ (LPE2) was inactivated retained the ability to ferment xylose but were impaired in their ability to ferment isoprimeverose (alpha-D-xylopyranosyl-(1,6)-D-glucopyranose). Disruption of xylQ resulted specifically in the loss of a membrane-associated alpha-xylosidase activity when LPE1 or LPE2 cells were grown on xylose. In the membrane fraction of wild-type bacteria, alpha-xylosidase could catalyze the hydrolysis of isoprimeverose and p-nitrophenyl-alpha-D-xylopyranoside with apparent Km and Vmax values of 0.2 mM and 446 nmol/min/mg of protein, and 1.3 mM and 54 nmol/min/mg of protein, respectively. The enzyme could also hydrolyze the alpha-xylosidic linkage in xyloglucan oligosaccharides, but neither methyl-alpha-D-xylopyranoside nor alpha-glucosides were substrates. Glucose repressed the synthesis of alpha-xylosidase fivefold, and 80% of this repression was released in an L. pentosus delta ccpA mutant. The alpha-xylosidase gene was also expressed in the absence of xylose when xylR was disrupted.
KeywordMeSH Terms
Genes, Bacterial
Symporters

331, Shih-Pin Rd., Hsinchu 30062, Taiwan

Phone: +886-3-5223191

E-mail: bcrcweb@firdi.org.tw

web maintainance: +886-3-5223191 ext 593

Copyright © 2018.BCRC All rights reserved.The duplication or use of information and data such as texts or images or any linkage the website at the "bcrc.firdi.org.tw" is only permitted with the indication of the source or with prior approval by the BCRC(Bioresource Collection and Research Center).