BCRC Strain Collection Catalog & Shopping Cart

  Home / BCRC Content / 11259 / 

Return

  Research Article

The information shown in this page was generated using the cross-referenced linkage within public domain database between their strains and BCRC related strains. Usually the information provided from public domain databases varies with different confidences and errors, BCRC provides the related information here at best effort, but BCRC doesn't take the responsibility about the correctness of the information provided here.

1. Dhalluin  A, Lemée  L, Pestel-Caron  M, Mory  F, Leluan  G, Lemeland  JF, Pons  JL,     ( 2003 )

Genotypic differentiation of twelve Clostridium species by polymorphism analysis of the triosephosphate isomerase (tpi) gene.

Systematic and applied microbiology 26 (1)
PMID : 12747415  :   DOI  :   10.1078/072320203322337362    
Abstract >>
Housekeeping genes encoding metabolic enzymes may provide alternative markers to 16S ribosomal DNA (rDNA) for genotypic and phylogenetic characterization of bacterial species. We have developed a PCR-restriction fragment length polymorphism (PCR-RFLP) assay, targeting the triosephosphate isomerase (tpi) gene, which allows the differentiation of twelve pathogenic Clostridium species. Degenerate primers constructed from alignments of tpi sequences of various gram-positive bacteria allowed the amplification of a 501 bp target region in the twelve Clostridium type strains. A phylogenetic tree constructed from the nucleotidic sequences of these tpi amplicons was well correlated with that inferred from analysis of 16S rDNA gene sequences. The analysis of tpi sequences revealed restriction sites of enzyme AluI that could be species-specific. Indeed, AluI digestion of amplicons from the twelve type strains provided distinct restriction patterns. A total of 127 strains (three to sixteen strains for each species) was further analyzed by PCR-RFLP of the tpi gene, and confirmed that each species could be characterized by one to three restriction types (RTs). The differences between RTs within species could be explained by point mutations in AluI restriction sites of the tpi sequences. PCR-restriction analysis of the tpi gene offers an accurate tool for species identification within the genus Clostridium, and provides an alternative marker to 16S rDNA for phylogenetic analyses.
KeywordMeSH Terms
Genes, Bacterial
Polymerase Chain Reaction
Polymorphism, Restriction Fragment Length
2. Dickert  S, Pierik  AJ, Buckel  W,     ( 2002 )

Molecular characterization of phenyllactate dehydratase and its initiator from Clostridium sporogenes.

Molecular microbiology 44 (1)
PMID : 11967068  :   DOI  :   10.1046/j.1365-2958.2002.02867.x    
Abstract >>
The heterotrimeric phenyllactate dehydratase from Clostridium sporogenes, FldABC, catalyses the reversible dehydration of (R)-phenyllactate to (E)-cinnamate in two steps: (i) CoA-transfer from the cofactor cinnamoyl-CoA to phenyllactate to yield phenyllactyl-CoA and the product cinnamate mediated by FldA, a (R)-phenyllactate CoA-transferase; followed by (ii) dehydration of phenyllactyl-CoA to cinnamoyl-CoA mediated by heterodimeric FldBC, a phenyllactyl-CoA dehydratase. Phenyllactate dehydratase requires initiation by ATP, MgCl2 and a reducing agent such as dithionite mediated by an extremely oxygen-sensitive initiator protein (FldI) present in the cell-free extract. All four genes coding for these proteins were cloned and shown to be clustered in the order fldAIBC, which shares over 95% sequence identity of nucleotide and protein levels with a gene cluster detected in the genome of the closely related Clostridium botulinum Hall strain A. FldA shows sequence similarities to a new family of CoA-transferases, which apparently do not form covalent enzyme CoA-ester intermediates. An N-terminal Strep II-Tag containing enzymatically active FldI was overproduced and purified from Escherichia coli. FldI was characterized as a homodimeric protein, which contains one [4Fe-4S]1+/2+ cluster with an electron spin S = 3/2 in the reduced form. The amino acid sequence as well as the chemical and EPR-properties of the pure protein are very similar to those of component A of 2-hydroxyglutaryl-CoA dehydratase from Acidaminococcus fermentans (HgdC), which was able to replace FldI in the activation of phenyllactate dehydratase. Only in the oxidized state, FldI and component A exhibit significant ATPase activity, which appears to be essential for unidirectional electron transfer. Both subunits of phenyllactyl-CoA dehydratase (FldBC) show significant sequence similarities to both subunits of 2-hydroxyglutaryl-CoA dehydratase (HgdAB). The fldAIBC gene cluster resembles the hadAIBC gene cluster in the genome of Clostridium difficile and the hadABC,I genes in C. botulinum. The four subunits of these deduced 2-hydroxyacid dehydratases (65-81% amino acid sequence identity between the had genes) probably code for a 2-hydroxyisocaproate dehydratase involved in leucine fermentation. This enzyme could be the target for metronidazole in the treatment of pseudomembranous enterocolitis caused by C. difficile.
KeywordMeSH Terms
3. Wiedmann  M, Arcuri  EF,     ( 2000 )

Phylogeny and functional conservation of sigma(E) in endospore-forming bacteria.

Microbiology (Reading, England) 146 (Pt 7) (N/A)
PMID : 10878124  :   DOI  :   10.1099/00221287-146-7-1593    
Abstract >>
Conservation of the sporulation processes between Bacillus spp. and Clostridium spp. was investigated through evolutionary and complementation analyses of sigma(E). Alignment of partial predicted sigma(E) amino acid sequences from three Bacillus spp., Paenibacillus polymyxa and five Clostridium spp. revealed that amino acid residues previously reported to be involved in promoter utilization (M124, E119 and N120) and strand opening (C117) are conserved among all these species. Phylogenetic analyses of various sigma factor sequences from endospore-forming bacteria revealed that homologues of sigma(E), sigma(K) and sigma(G) clustered together regardless of genus, suggesting a common origin of sporulation sigma factors. The functional equivalence between Clostridium acetobutylicum sigma(E) and Bacillus subtilis sigma(E) was investigated by complementing a non-polar B. subtilis sigma(E) null mutant with the spoIIG operon from either B. subtilis (spoIIG(Bs)) or C. acetobutylicum (spoIIG(Ca)). Single-copy integration of spoIIG(Bs) into the amyE locus of the sigma(E) null mutant completely restored the wild-type sporulation phenotype, while spoIIG(Ca) only partially restored sporulation. Maximal expression of spoIIG(Ca)-lacZ occurred approximately 12 h later than maximal expression of spoIIG(Bs)-lacZ. Differences in temporal expression patterns for spoIIG(Ca) and spoIIG(Bs) in the B. subtilis background may at least partially explain the observed sporulation complementation phenotypes. This study suggests a common phylogenetic ancestor for sigma(E) in Bacillus spp. and Clostridium spp., although regulation of sigma(E) expression may differ in these two genera.
KeywordMeSH Terms
4. Pierik  AJ, Dickert  S,     ( 2000 )

The involvement of coenzyme A esters in the dehydration of (R)-phenyllactate to (E)-cinnamate by Clostridium sporogenes.

European journal of biochemistry 267 (12)
PMID : 10849007  :   DOI  :   10.1046/j.1432-1327.2000.01427.x    
Abstract >>
Phenyllactate dehydratase from Clostridium sporogenes grown anaerobically on L-phenylalanine catalyses the reversible syn-dehydration of (R)-phenyllactate to (E)-cinnamate. Purification yielded a heterotrimeric enzyme complex (130 +/- 15 kDa) composed of FldA (46 kDa), FldB (43 kDa) and FldC (40 kDa). By re-chromatography on Q-Sepharose, the major part of FldA could be separated and identified as oxygen insensitive cinnamoyl-CoA:phenyllactate CoA-transferase, whereas the transferase depleted trimeric complex retained oxygen sensitive phenyllactate dehydratase activity and contained about one [4Fe-4S] cluster. The dehydratase activity required 10 microM FAD, 0.4 mM ATP, 2.5 mM MgCl2, 0.1 mM NADH, 5 microM cinnamoyl-CoA and small amounts of cell-free extract (10 microg protein per mL) similar to that known for 2-hydroxyglutaryl-CoA dehydratase from Acidaminococcus fermentans. The N-terminus of the homogenous FldA (39 amino acids) is homologous to that of CaiB (39% sequence identity) involved in carnitine metabolism in Escherichia coli. Both enzymes are members of an emerging group of CoA-transferases which exhibit high substrate specificity but apparently do not form enzyme CoA-ester intermediates. It is concluded that dehydration of (R)-phenyllactate to (E)-cinnamate proceeds in two steps, a CoA-transfer from cinnamoyl-CoA to phenyllactate, catalysed by FldA, followed by the dehydration of phenyllactyl-CoA, catalysed by FldB and FldC, whereby the noncovalently bound prosthetic group cinnamoyl-CoA is regenerated. This demonstrates the necessity of a 2-hydroxyacyl-CoA intermediate in the dehydration of 2-hydroxyacids. The transient CoA-ester formation during the dehydration of phenyllactate resembles that during citrate cleavage catalysed by bacterial citrate lyase, which contain a derivative of acetyl-CoA covalently bound to an acyl-carrier-protein (ACP).
KeywordMeSH Terms
5. Iddar  A, Valverde  F, Assobhei  O, Serrano  A, Soukri  A,     ( 2005 )

Widespread occurrence of non-phosphorylating glyceraldehyde-3-phosphate dehydrogenase among gram-positive bacteria.

International microbiology : the official journal of the Spanish Society for Microbiology 8 (4)
PMID : 16562377  :  
Abstract >>
The non-phosphorylating glyceraldehyde 3-phosphate dehydrogenase (GAPDHN, NADP+-specific, EC 1.2.1.9) is present in green eukaryotes and some Streptococcus strains. The present report describes the results of activity and immunoblot analyses, which were used to generate the first survey of bacterial GAPDHN distribution in a number of Bacillus, Streptococcus and Clostridium strains. Putative gapN genes were identified after PCR amplification of partial 700-bp sequences using degenerate primers constructed from highly conserved protein regions. Alignment of the amino acid sequences of these fragments with those of known sequences from other eukaryotic and prokaryotic GAPDHNs, demonstrated the presence of conserved residues involved in catalytic activity that are not conserved in aldehyde dehydrogenases, a protein family closely linked to GAPDHNs. The results confirm that the basic structural features of the members of the GAPDHN family have been conserved throughout evolution and that no identity exists with phosphorylating GAPDHs. Furthermore, phylogenetic trees generated from multiple sequence alignments suggested a close relationship between plant and bacterial GAPDHN families.
KeywordMeSH Terms
6. Hill  JE, Penny  SL, Crowell  KG, Goh  SH, Hemmingsen  SM,     ( 2004 )

cpnDB: a chaperonin sequence database.

Genome research 14 (8)
PMID : 15289485  :   DOI  :   10.1101/gr.2649204     PMC  :   PMC509277    
Abstract >>
Type I chaperonins are molecular chaperones present in virtually all bacteria, some archaea and the plastids and mitochondria of eukaryotes. Sequences of cpn60 genes, encoding 60-kDa chaperonin protein subunits (CPN60, also known as GroEL or HSP60), are useful for phylogenetic studies and as targets for detection and identification of organisms. Conveniently, a 549-567-bp segment of the cpn60 coding region can be amplified with universal PCR primers. Here, we introduce cpnDB, a curated collection of cpn60 sequence data collected from public databases or generated by a network of collaborators exploiting the cpn60 target in clinical, phylogenetic, and microbial ecology studies. The growing database currently contains approximately 2000 records covering over 240 genera of bacteria, eukaryotes, and archaea. The database also contains over 60 sequences for the archaeal Type II chaperonin (thermosome, a homolog of eukaryotic cytoplasmic chaperonin) from 19 archaeal genera. As the largest curated collection of sequences available for a protein-encoding gene, cpnDB provides a resource for researchers interested in exploiting the power of cpn60 as a diagnostic or as a target for phylogenetic or microbial ecology studies, as well as those interested in broader subjects such as lateral gene transfer and codon usage. We built cpnDB from open source tools and it is available at http://cpndb.cbr.nrc.ca.
KeywordMeSH Terms
7. Cooksley  CM, Davis  IJ, Winzer  K, Chan  WC, Peck  MW, Minton  NP,     ( 2010 )

Regulation of neurotoxin production and sporulation by a Putative agrBD signaling system in proteolytic Clostridium botulinum.

Applied and environmental microbiology 76 (13)
PMID : 20453132  :   DOI  :   10.1128/AEM.03038-09     PMC  :   PMC2897414    
Abstract >>
A significant number of genome sequences of Clostridium botulinum and related species have now been determined. In silico analysis of these data revealed the presence of two distinct agr loci (agr-1 and agr-2) in all group I strains, each encoding putative proteins with similarity to AgrB and AgrD of the well-studied Staphylococcus aureus agr quorum sensing system. In S. aureus, a small diffusible autoinducing peptide is generated from AgrD in a membrane-located processing event that requires AgrB. Here the characterization of both agr loci in the group I strain C. botulinum ATCC 3502 and of their homologues in a close relative, Clostridium sporogenes NCIMB 10696, is reported. In C. sporogenes NCIMB 10696, agr-1 and agr-2 appear to form transcriptional units that consist of agrB, agrD, and flanking genes of unknown function. Several of these flanking genes are conserved in Clostridium perfringens. In agreement with their proposed role in quorum sensing, both loci were maximally expressed during late-exponential-phase growth. Modulation of agrB expression in C. sporogenes was achieved using antisense RNA, whereas in C. botulinum, insertional agrD mutants were generated using ClosTron technology. In comparison to the wild-type strains, these strains exhibited drastically reduced sporulation and, for C. botulinum, also reduced production of neurotoxin, suggesting that both phenotypes are controlled by quorum sensing. Interestingly, while agr-1 appeared to control sporulation, agr-2 appeared to regulate neurotoxin formation.
KeywordMeSH Terms
Bacterial Proteins
Clostridium botulinum
Gene Expression Regulation, Bacterial
Signal Transduction
8. Schill  KM, Wang  Y, Butler  RR, Pombert  JF, Reddy  NR, Skinner  GE, Larkin  JW,     ( 2016 )

Genetic Diversity of Clostridium sporogenes PA 3679 Isolates Obtained from Different Sources as Resolved by Pulsed-Field Gel Electrophoresis and High-Throughput Sequencing.

Applied and environmental microbiology 82 (1)
PMID : 26519392  :   DOI  :   10.1128/AEM.02616-15     PMC  :   PMC4702626    
Abstract >>
Clostridium sporogenes PA 3679 is a nonpathogenic, nontoxic model organism for proteolytic Clostridium botulinum used in the validation of conventional thermal food processes due to its ability to produce highly heat-resistant endospores. Because of its public safety importance, the uncertain taxonomic classification and genetic diversity of PA 3679 are concerns. Therefore, isolates of C. sporogenes PA 3679 were obtained from various sources and characterized using pulsed-field gel electrophoresis (PFGE) and whole-genome sequencing. The phylogenetic relatedness and genetic variability were assessed based on 16S rRNA gene sequencing and whole-genome single nucleotide polymorphism (SNP) analysis. All C. sporogenes PA 3679 isolates were categorized into two clades (clade I containing ATCC 7955 NCA3679 isolates 1961-2, 1990, and 2007 and clade II containing PA 3679 isolates NFL, UW, FDA, and Campbell and ATCC 7955 NCA3679 isolate 1961-4). The 16S maximum likelihood (ML) tree clustered both clades within proteolytic C. botulinum strains, with clade I forming a distinct cluster with other C. sporogenes non-PA 3679 strains. SNP analysis revealed that clade I isolates were more similar to the genomic reference PA 3679 (NCTC8594) genome (GenBank accession number AGAH00000000.1) than clade II isolates were. The genomic reference C. sporogenes PA 3679 (NCTC8594) genome and clade I C. sporogenes isolates were genetically distinct from those obtained from other sources (University of Wisconsin, National Food Laboratory, U.S. Food and Drug Administration, and Campbell's Soup Company). Thermal destruction studies revealed that clade I isolates were more sensitive to high temperature than clade II isolates were. Considering the widespread use of C. sporogenes PA 3679 and its genetic information in numerous studies, the accurate identification and genetic characterization of C. sporogenes PA 3679 are of critical importance.
KeywordMeSH Terms
Genetic Variation
9. Olsen  JS, Scholz  H, Fillo  S, Ramisse  V, Lista  F, Trømborg  AK, Aarskaug  T, Thrane  I, Blatny  JM,     ( 2014 )

Analysis of the genetic distribution among members of Clostridium botulinum group I using a novel multilocus sequence typing (MLST) assay.

Journal of microbiological methods 96 (N/A)
PMID : 24246230  :   DOI  :   10.1016/j.mimet.2013.11.003    
Abstract >>
Clostridium botulinum is the etiological agent of botulism. Due to food-borne poisoning and the potential use of the extremely toxic botulinum neurotoxin (BoNT) from C. botulinum in bioterror or biocrime related actions, reliable high resolution typing methods for discriminating C. botulinum strains are needed. Partial sequencing of the adk, atpH, gyrB, proC, rpoD and spo0A genes from 51 various C. botulinum/sporogenes isolates was performed, resulting in 37 different sequence types (STs). Analysis of the sequence data revealed a genetic distribution in five larger clusters with a loose correlation to the BoNT serotypes. The developed MLST assay had a slightly lower resolution ability when compared to the MLVA (multilocus variable number of tandem repeat analysis), but the two methods resulted in similar subclusters of the strains possessing the BoNT serotypes A, B and F. The current work presents the development of a novel MLST assay useful for genotyping C. botulinum related to basic phylogenetic research and trace-back analysis in microbial forensic studies.
KeywordMeSH Terms
Clostridium botulinum
MLST
MLVA
Phylogenetic
Clostridium botulinum
MLST
MLVA
Phylogenetic
10. Dobritsa  AP, Kutumbaka  KK, Werner  K, Wiedmann  M, Asmus  A, Samadpour  M,     ( 2017 )

Clostridium tepidum sp. nov., a close relative of Clostridium sporogenes and Clostridium botulinum Group I.

International journal of systematic and evolutionary microbiology 67 (7)
PMID : 28693684  :   DOI  :   10.1099/ijsem.0.001948    
Abstract >>
Obligately anaerobic, Gram-stain-positive, spore-forming bacteria indistinguishable by pulsed-field gel electrophoresis were isolated from non-dairy protein shakes in bloated bottles. One of the isolates, strain IEH 97212T, was selected for further study. The strain was closely related to Clostridium sporogenes and Clostridium botulinum Group 1 based on 16S rRNA gene sequence similarities. Phylogenetic analysis also showed that strain IEH 97212T and strain PE (=DSM 18688), a bacterium isolated from solfataric mud, had identical 16S rRNA gene sequences. Strains IEH 97 212T and DSM 18 688 were relatively more thermophilic (temperature range for growth: 30-55 �XC) and less halotolerant [growth range: 0-2.5 % (w/v) NaCl] than C. sporogenes and C. botulinum. They were negative for catalase, oxidase, urease and l-pyrrolidonyl-arylamidase and did not produce indole. The strains produced acid from d-glucose, maltose and trehalose, and hydrolysed gelatin, but did not hydrolyse aesculin. The end-products of growth included acetic acid, propionic acid, butyric acid, isobutyric acid, valeric acid, isovaleric acid, isocaproic acid, phenylpropionic acid, 2-piperidinone, 2-pyrrolidinone and gas(es). The predominant fatty acids were C14 : 0, C16 : 0 and C18 : 1�s9c. The genomic DNA G+C content of strains IEH 97212T and DSM 18688 was 26.9 and 26.7 mol%, respectively. According to the digital DNA-DNA hybridization data, the relatedness of these strains was 98.4 %, while they showed only 35.7-36.0 % relatedness to C. sporogenes. Based on the results of this polyphasic study, these strains represent a novel species, for which the name Clostridium tepidum sp. nov. is proposed, with the type strain IEH 97212T (=NRRL B-65463T=DSM 104389T).
KeywordMeSH Terms
Food Microbiology
Phylogeny
11.     ( 1990 )

Purification of NADPH-dependent electron-transferring flavoproteins and N-terminal protein sequence data of dihydrolipoamide dehydrogenases from anaerobic, glycine-utilizing bacteria.

Journal of bacteriology 172 (4)
PMID : 2318809  :   DOI  :   10.1128/jb.172.4.2088-2095.1990     PMC  :   PMC208708    
Abstract >>
Three electron-transferring flavoproteins were purified to homogeneity from anaerobic, amino acid-utilizing bacteria (bacterium W6, Clostridium sporogenes, and Clostridium sticklandii), characterized, and compared with the dihydrolipoamide dehydrogenase of Eubacterium acidaminophilum. All the proteins were found to be dimers consisting of two identical subunits with a subunit Mr of about 35,000 and to contain about 1 mol of flavin adenine dinucleotide per subunit. Spectra of the oxidized proteins exhibited characteristic absorption of flavoproteins, and the reduced proteins showed an A580 indicating a neutral semiquinone. Many artificial electron acceptors, including methyl viologen, could be used with NADPH as the electron donor but not with NADH. Unlike the enzyme of E. acidaminophilum, which exhibited by itself a dihydrolipoamide dehydrogenase activity (W. Freudenberg, D. Dietrichs, H. Lebertz, and J. R. Andreesen, J. Bacteriol. 171:1346-1354, 1989), the electron-transferring flavoprotein purified from bacterium W6 reacted with lipoamide only under certain assay conditions, whereas the proteins of C. sporogenes and C. sticklandii exhibited no dihydrolipoamide dehydrogenase activity. The three homogeneous electron-transferring flavoproteins were very similar in their structural and biochemical properties to the dihydrolipoamide dehydrogenase of E. acidaminophilum and exhibited cross-reaction with antibodies raised against the latter enzyme. N-terminal sequence analysis demonstrated a high degree of homology between the dihydrolipoamide dehydrogenase of E. acidaminophilum and the electron-transferring flavoprotein of C. sporogenes to the thioredoxin reductase of Escherichia coli. Unlike these proteins, the dihydrolipoamide dehydrogenases purified from the anaerobic, glycine-utilizing bacteria Peptostreptococcus glycinophilus, Clostridium cylindrosporum, and C. sporogenes exhibited a high homology to dihydrolipoamide dehydrogenases known from other organisms.
KeywordMeSH Terms
12.     ( 1998 )

Fast purification of thioredoxin reductases and of thioredoxins with an unusual redox-active centre from anaerobic, amino-acid-utilizing bacteria.

Microbiology (Reading, England) 144 (Pt 3) (N/A)
PMID : 9534247  :   DOI  :   10.1099/00221287-144-3-793    
Abstract >>
Thioredoxin reductase and thioredoxin are primarily involved in catabolic metabolism as important electron carriers in anaerobic, amino-acid-degrading bacteria. A general and fast procedure was developed for the purification of thioredoxin reductase and thioredoxin from Eubacterium acidaminophilum, Clostridium litorale, C. sticklandii, C. sporogenes, C. cylindrosporum and 'Tissierella creatinophila' based upon their properties: the binding to 2',5'-AMP-Sepharose by thioredoxin reductase and the inability of thioredoxins to bind to a DEAE-Sephacel column. The consensus sequence at the active site of thioredoxins (-WCGPC-) was found to be modified in all of these anaerobes: Trp-31 (Escherichia coli nomenclature) was replaced by Gly or Ser, Gly-33 by Val or Glu. None of these thioredoxins reacted with thioredoxin reductase of E. coli or vice versa, but they did interact with the thioredoxin reductases obtained from the other anaerobes studied. Based upon their distinguishing features it is suggested that these thioredoxins might form an evolutionarily separate group.
KeywordMeSH Terms

331, Shih-Pin Rd., Hsinchu 30062, Taiwan

Phone: +886-3-5223191

E-mail: bcrcweb@firdi.org.tw

web maintainance: +886-3-5223191 ext 593

Copyright © 2018.BCRC All rights reserved.The duplication or use of information and data such as texts or images or any linkage the website at the "bcrc.firdi.org.tw" is only permitted with the indication of the source or with prior approval by the BCRC(Bioresource Collection and Research Center).