BCRC Strain Collection Catalog & Shopping Cart

  Home / BCRC Content / 11475 / 

Return

  Research Article

The information shown in this page was generated using the cross-referenced linkage within public domain database between their strains and BCRC related strains. Usually the information provided from public domain databases varies with different confidences and errors, BCRC provides the related information here at best effort, but BCRC doesn't take the responsibility about the correctness of the information provided here.

1. Pahl  A, Keller  U,     ( 1992 )

FK-506-binding proteins from streptomycetes producing immunosuppressive macrolactones of the FK-506 type.

Journal of bacteriology 174 (18)
PMID : 1381710  :   DOI  :   10.1128/jb.174.18.5888-5894.1992     PMC  :   PMC207125    
Abstract >>
FK-506-binding proteins (FKBPs), which in T cells are supposed to mediate the immunosuppressive effects of the compounds FK-506 and rapamycin, have been isolated from Streptomyces chrysomallus, S. hygroscopicus subsp. ascomyceticus, and S. hygroscopicus. The latter two strains are producers of ascomycin (the ethyl analog of FK-506) and rapamycin, respectively. Like the 12-kDa FKBP in eukaryotic organisms such as humans, bovines, and Saccharomyces cerevisiae, or the FKBPs from gram-positive streptomycetes are peptidyl-prolyl-cis-trans isomerases. Inhibition studies using FK-506, rapamycin, or ascomycin, revealed inhibition of the peptidyl-prolyl cis-trans isomerase activity of the proteins at the nanomolar level, which is in the same range as with eukaryotic FKBPs. The M(r)s of the various FKBPs were 13,500 to 15,000, and they had the same pI of approximately 4.5. The N-terminal sequences of the three FKBPs were nearly identical in the first 20 amino acids. The amino acid sequence deduced from the gene sequence of S. chrysomallus gave a polypeptide of 124 amino acids. The homologies to FKBPs from humans, S. cerevisiae, and Neurospora crassa were 38, 39, and 50% identity in relevant positions, respectively. Significant homology of 38% was also seen with the C-terminal halves of bacterial protein surface antigens like the Mip protein of Legionella pneumophila and the 27-kDa Mip-like protein of Chlamydia trachomatis. In addition, two more open reading frames in Pseudomonas aeruginosa and Neisseria meningitidis of unknown function show regions of homology to the S. chrysomallus FKBP. In contrast to fungi, streptomycetes are resistant to macrolactones. Ascomycin-producing S. hygroscopicus subsp. ascomyceticus excretes the compound almost quantitatively into medium, which indicates that the organism has an efficient self-protection mechanism against its own secondary metabolite.
KeywordMeSH Terms
2. Majka  J, Zakrzewska-Czerwiñska  J, Messer  W,     ( 2001 )

Sequence recognition, cooperative interaction, and dimerization of the initiator protein DnaA of Streptomyces.

The Journal of biological chemistry 276 (9)
PMID : 11073953  :   DOI  :   10.1074/jbc.M007876200    
Abstract >>
Using a combined PCR-gel retardation assay, the preferred recognition sequence of the Streptomyces initiator protein DnaA was determined. The protein showed a preference toward DNA containing two Escherichia coli-like DnaA boxes in a head-to-head arrangement (consensus sequence TTATCCACA, whereas the consensus sequence of the DnaA boxes found in the Streptomyces oriC region is TTGTCCACA). In quantitative band shift experiments, the kinetics of the Streptomyces DnaA-DnaA box interaction was characterized. The DnaA protein can form dimers while binding to a single DnaA box; dimer formation is mediated by the domain III of the protein, and the dissociation constant of this process was between 35 and 115 nm. Streptomyces initiator protein DnaA interacts in a cooperative manner with DNA containing multiple binding sites. For the cooperativity effect, which seems to be independent of the distance separating the DnaA boxes, domain I (or I and II) is responsible. The cooperativity constant is moderate and is in the range of 20-110.
KeywordMeSH Terms
DNA Replication
3. Pfennig  F, Schauwecker  F,     ( 2000 )

Construction and in vitro analysis of a new bi-modular polypeptide synthetase for synthesis of N-methylated acyl peptides.

Chemistry & biology 7 (4)
PMID : 10780924  :  
Abstract >>
Many active peptides are synthesized by nonribosomal peptide synthetases (NRPSs), large multimodular enzymes. Each module incorporates one amino acid, and is composed of two domains: an activation domain that activates the substrate amino acid and a condensation domain for peptide-bond formation. Activation domains sometimes contain additional activities (e.g. N-methylation or epimerization). Novel peptides can be generated by swapping domains. Exchange of domains containing N-methylation activity has not been reported, however. The actinomycin NRPS was used to investigate domain swapping. The first two amino acids of actinomycin are threonine and valine. We replaced the valine activation domain of module 2 with an N-methyl valine (MeVal) activation domain. The recombinant NRPS (AcmTmVe) catalyzes the formation of threonyl-valine. In the presence of S-adenosyl-methionine, valine was converted to MeVal but subsequent dipeptide formation was blocked. When acyl-threonine (the natural intermediate) was present at module 1, formation of acyl-threonine-MeVal occurred. The epimerization domain of AcmTmVe was impaired. A simple activation domain can be replaced by one with N-methylation activity. The same condensation domain can catalyze peptide-bond formation between N-methyl and nonmethylated amino acids. Modification of the upstream amino acid (i.e. acylation of threonine), however, was required for condensation with MeVal. Steric hindrance reduces chemical reactivity of N-methyl amino acids - perfect substrate positioning may only be achieved with acylated threonine. Loss of the epimerase activity of AcmTmVe suggests N-methyltransferase and epimerase domains, not found together naturally, are incompatible.
KeywordMeSH Terms
4. Ng  CP, Loke  P,     ( 2000 )

PCR cloning, heterologous expression, and characterization of isopenicillin N synthase from Streptomyces lipmanii NRRL 3584.

Canadian journal of microbiology 46 (2)
PMID : 10721485  :  
Abstract >>
A key step which involves the cyclization of delta-(L-alpha-aminoadipyl)-L-cysteinyl-D-valine to the bicyclic ring structure of isopenicillin N in the penicillin and cephalosporin biosynthetic pathway, is catalyzed by isopenicillin N synthase (IPNS). In this study, an IPNS gene from Streptomyces lipmanii NRRL 3584 (slIPNS) was cloned via PCR-based homology cloning, sequenced and expressed in Escherichia coli. Soluble slIPNS was overexpressed up to 21% of total soluble protein, and verified to be functionally active when in an IPNS enzymatic assay. Sequence comparison of the slIPNS gene obtained (excluding the consensus primer sequences) with another cloned IPNS from S. lipmanii 16884.3, revealed one three-nucleotide deletion and three closely-spaced single nucleotide deletions. Furthermore, this paper also reports the first instance of the usage of PCR as an alternative and rapid strategy for IPNS cloning using consensus primers.
KeywordMeSH Terms
5. Schauwecker  F, Keller  U,     ( 1999 )

Molecular characterization of the genes of actinomycin synthetase I and of a 4-methyl-3-hydroxyanthranilic acid carrier protein involved in the assembly of the acylpeptide chain of actinomycin in Streptomyces.

The Journal of biological chemistry 274 (18)
PMID : 10212227  :   DOI  :   10.1074/jbc.274.18.12508    
Abstract >>
Actinomycin synthetase I (ACMS I) activates 4-methyl-3-hydroxyanthranilic acid, the precursor of the chromophoric moiety of the actinomycin, as adenylate. The gene acmA of ACMS I was identified upstream of the genes acmB and acmC encoding the two peptide synthetases ACMS II and ACMS III, respectively, which assemble the pentapeptide lactone rings of the antibiotic. Sequence analysis and expression of acmA in Streptomyces lividans as enzymatically active hexa-His-fusion confirmed the acmA gene product to be ACMS I. An open reading frame of 234 base pairs (acmD), which encodes a 78-amino acid protein with similarity to various acyl carrier proteins, is located downstream of acmA. The acmD gene was expressed in Escherichia coli as hexa-His-fusion protein (Acm acyl carrier protein (AcmACP)). ACMS I in the presence of ATP acylated the purified AcmACP with radioactive p-toluic acid, used as substrate in place of 4-MHA. Only 10% of the AcmACP from E. coli was acylated, suggesting insufficient modification with 4'-phosphopantetheine cofactor. Incubation of this AcmACP with a holo-ACP synthase and coenzyme A quantitatively established the holo-form of AcmACP. Enzyme assays in the presence of ACMS II showed that toluyl-AcmACP directly acylated the thioester-bound threonine on ACMS II. Thus, AcmACP is a 4-MHA carrier protein in the peptide chain initiation of actinomycin synthesis.
KeywordMeSH Terms
6. Lacalle  RA, Tercero  JA, Jiménez  A,     ( 1992 )

Cloning of the complete biosynthetic gene cluster for an aminonucleoside antibiotic, puromycin, and its regulated expression in heterologous hosts.

The EMBO journal 11 (2)
PMID : 1537349  :   PMC  :   PMC556512    
Abstract >>
Puromycin, produced by Streptomyces alboniger, is a member of the large group of aminonucleoside antibiotics. The genes pac and dmpM, encoding a puromycin N-acetyl transferase and an O-demethyl puromycin O-methyltransferase, respectively, are tightly linked in the DNA of S. alboniger. The entire set of genes encoding the puromycin biosynthesis pathway was cloned by screening a gene library from S. alboniger, raised in the low copy number cosmid pKC505, with a DNA fragment containing pac and dmpM. Puromycin was identified by biochemical and physicochemical methods, including 1H NMR, in the producing transformants. This pathway was located in a single DNA fragment of 15 kb which included the resistance, structural and regulatory genes and was expressed when introduced into two heterologous hosts Streptomyces lividans and Streptomyces griseofuscus. In addition to pac and dmpM, two other genes have been identified in the pur cluster: pacHY, which determines an N-acetylpuromycin hydrolase and prg1, whose deduced amino acid sequence is significantly similar to that of degT, a Bacillus stearothermophilus pleiotropic regulatory gene.
KeywordMeSH Terms
Genes, Bacterial
Multigene Family
7. Prabhu  J, Schauwecker  F, Grammel  N, Keller  U, Bernhard  M,     ( 2004 )

Functional expression of the ectoine hydroxylase gene (thpD) from Streptomyces chrysomallus in Halomonas elongata.

Applied and environmental microbiology 70 (5)
PMID : 15128576  :   DOI  :   10.1128/aem.70.5.3130-3132.2004     PMC  :   PMC404422    
Abstract >>
The formation of hydroxyectoine in the industrial ectoine producer Halomonas elongata was improved by the heterologous expression of the ectoine hydroxylase gene, thpD, from Streptomyces chrysomallus. The efficient conversion of ectoine to hydroxyectoine was achieved by the concerted regulation of thpD by the H. elongata ectA promoter.
KeywordMeSH Terms
8. Pahl  A, Uhlein  M, Bang  H, Schlumbohm  W, Keller  U,     ( 1992 )

Streptomycetes possess peptidyl-prolyl cis-trans isomerases that strongly resemble cyclophilins from eukaryotic organisms.

Molecular microbiology 6 (23)
PMID : 1474897  :   DOI  :   10.1111/j.1365-2958.1992.tb01790.x    
Abstract >>
A functionally active 17.5 kDa peptidyl-prolyl cis-trans isomerase was purified to homogeneity from Streptomyces chrysomallus, a Gram-positive filamentous bacterium. Characterization of the enzyme revealed inhibition and binding characteristics, against the immunsuppressive drug cyclosporin A, which were similar to cyclophilins from eukaryotes such as mammals, plants, fungi and yeasts, but different from those of cyclophilins from enterobacteria such as Escherichia coli. The amino acid sequence of the S. chrysomallus cyclophilin, as deduced from the gene sequence, revealed a striking degree of amino acid sequence identity with the corresponding 17 kDa proteins of humans (66%), Neurospora (70%) and yeast (69%). Comparison with cyclophilin sequences from the Gram-negative enterobacteria revealed much less homology (25% identity with E. coli b, 23% identity with E. coli a). Cyclophilin was detected in each of the four other Streptomyces species tested. The cyclophilins from the various streptomycetes differed in size, varying between 17 and 20.5 kDa. The cyclophilins were abundant in the Streptomyces cells, and present throughout growth.
KeywordMeSH Terms
9. Laskaris  P, Tolba  S, Calvo-Bado  L, Wellington  EM, Wellington  L,     ( 2010 )

Coevolution of antibiotic production and counter-resistance in soil bacteria.

Environmental microbiology 12 (3)
PMID : 20067498  :   DOI  :   10.1111/j.1462-2920.2009.02125.x    
Abstract >>
We present evidence for the coexistence and coevolution of antibiotic resistance and biosynthesis genes in soil bacteria. The distribution of the streptomycin (strA) and viomycin (vph) resistance genes was examined in Streptomyces isolates. strA and vph were found either within a biosynthetic gene cluster or independently. Streptomyces griseus strains possessing the streptomycin cluster formed part of a clonal complex. All S. griseus strains possessing solely strA belonged to two clades; both were closely related to the streptomycin producers. Other more distantly related S. griseus strains did not contain strA. S. griseus strains with only vph also formed two clades, but they were more distantly related to the producers and to one another. The expression of the strA gene was constitutive in a resistance-only strain whereas streptomycin producers showed peak strA expression in late log phase that correlates with the switch on of streptomycin biosynthesis. While there is evidence that antibiotics have diverse roles in nature, our data clearly support the coevolution of resistance in the presence of antibiotic biosynthetic capability within closely related soil dwelling bacteria. This reinforces the view that, for some antibiotics at least, the primary role is one of antibiosis during competition in soil for resources.
KeywordMeSH Terms
Soil Microbiology
10. Keller  U, Lang  M, Crnovcic  I, Pfennig  F, Schauwecker  F,     ( 2010 )

The actinomycin biosynthetic gene cluster of Streptomyces chrysomallus: a genetic hall of mirrors for synthesis of a molecule with mirror symmetry.

Journal of bacteriology 192 (10)
PMID : 20304989  :   DOI  :   10.1128/JB.01526-09     PMC  :   PMC2863554    
Abstract >>
A gene cluster was identified which contains genes involved in the biosynthesis of actinomycin encompassing 50 kb of contiguous DNA on the chromosome of Streptomyces chrysomallus. It contains 28 genes with biosynthetic functions and is bordered on both sides by IS elements. Unprecedentedly, the cluster consists of two large inverted repeats of 11 and 13 genes, respectively, with four nonribosomal peptide synthetase genes in the middle. Nine genes in each repeat have counterparts in the other, in the same arrangement but in the opposite orientation, suggesting an inverse duplication of one of the arms during the evolution of the gene cluster. All of the genes appear to be organized into operons, each corresponding to a functional section of actinomycin biosynthesis, such as peptide assembly, regulation, resistance, and biosynthesis of the precursor of the actinomycin chromophore 4-methyl-3-hydroxyanthranilic acid (4-MHA). For 4-MHA synthesis, functional analysis revealed genes that encode pathway-specific isoforms of tryptophan dioxygenase, kynurenine formamidase, and hydroxykynureninase, which are distinct from the corresponding enzyme activities of cellular tryptophan catabolism in their regulation and in part in their substrate specificity. Phylogenetic analysis indicates that the pathway-specific tryptophan metabolism in Streptomyces most probably evolved divergently from the normal pathway of tryptophan catabolism to provide an extra or independent supply of building blocks for the synthesis of tryptophan-derived secondary metabolites.
KeywordMeSH Terms
11. Matter  AM, Hoot  SB, Anderson  PD, Neves  SS, Cheng  YQ,     ( 2009 )

Valinomycin biosynthetic gene cluster in Streptomyces: conservation, ecology and evolution.

PloS one 4 (9)
PMID : 19787052  :   DOI  :   10.1371/journal.pone.0007194     PMC  :   PMC2746310    
Abstract >>
Many Streptomyces strains are known to produce valinomycin (VLM) antibiotic and the VLM biosynthetic gene cluster (vlm) has been characterized in two independent isolates. Here we report the phylogenetic relationships of these strains using both parsimony and likelihood methods, and discuss whether the vlm gene cluster shows evidence of horizontal transmission common in natural product biosynthetic genes. Eight Streptomyces strains from around the world were obtained and sequenced for three regions of the two large nonribosomal peptide synthetase genes (vlm1 and vlm2) involved in VLM biosynthesis. The DNA sequences representing the vlm gene cluster are highly conserved among all eight environmental strains. The geographic distribution pattern of these strains and the strict congruence between the trees of the two vlm genes and the housekeeping genes, 16S rDNA and trpB, suggest vertical transmission of the vlm gene cluster in Streptomyces with no evidence of horizontal gene transfer. We also explored the relationship of the sequence of vlm genes to that of the cereulide biosynthetic genes (ces) found in Bacillus cereus and found them highly divergent from each other at DNA level (genetic distance values >or= 95.6%). It is possible that the vlm gene cluster and the ces gene cluster may share a relatively distant common ancestor but these two gene clusters have since evolved independently.
KeywordMeSH Terms
Multigene Family
12. Saleh  O, Gust  B, Boll  B, Fiedler  HP, Heide  L,     ( 2009 )

Aromatic prenylation in phenazine biosynthesis: dihydrophenazine-1-carboxylate dimethylallyltransferase from Streptomyces anulatus.

The Journal of biological chemistry 284 (21)
PMID : 19339241  :   DOI  :   10.1074/jbc.M901312200     PMC  :   PMC2682892    
Abstract >>
The bacterium Streptomyces anulatus 9663, isolated from the intestine of different arthropods, produces prenylated derivatives of phenazine 1-carboxylic acid. From this organism, we have identified the prenyltransferase gene ppzP. ppzP resides in a gene cluster containing orthologs of all genes known to be involved in phenazine 1-carboxylic acid biosynthesis in Pseudomonas strains as well as genes for the six enzymes required to generate dimethylallyl diphosphate via the mevalonate pathway. This is the first complete gene cluster of a phenazine natural compound from streptomycetes. Heterologous expression of this cluster in Streptomyces coelicolor M512 resulted in the formation of prenylated derivatives of phenazine 1-carboxylic acid. After inactivation of ppzP, only nonprenylated phenazine 1-carboxylic acid was formed. Cloning, overexpression, and purification of PpzP resulted in a 37-kDa soluble protein, which was identified as a 5,10-dihydrophenazine 1-carboxylate dimethylallyltransferase, forming a C-C bond between C-1 of the isoprenoid substrate and C-9 of the aromatic substrate. In contrast to many other prenyltransferases, the reaction of PpzP is independent of the presence of magnesium or other divalent cations. The K(m) value for dimethylallyl diphosphate was determined as 116 microm. For dihydro-PCA, half-maximal velocity was observed at 35 microm. K(cat) was calculated as 0.435 s(-1). PpzP shows obvious sequence similarity to a recently discovered family of prenyltransferases with aromatic substrates, the ABBA prenyltransferases. The present finding extends the substrate range of this family, previously limited to phenolic compounds, to include also phenazine derivatives.
KeywordMeSH Terms
Prenylation
13. Guo  Y, Zheng  W, Rong  X, Huang  Y,     ( 2008 )

A multilocus phylogeny of the Streptomyces griseus 16S rRNA gene clade: use of multilocus sequence analysis for streptomycete systematics.

International journal of systematic and evolutionary microbiology 58 (Pt 1)
PMID : 18175701  :   DOI  :   10.1099/ijs.0.65224-0    
Abstract >>
Streptomycetes are a complex group of actinomycetes that produce diverse bioactive metabolites of commercial significance. Systematics can provide a useful framework for identifying species that may produce novel metabolites. However, previously proposed approaches to the systematics of Streptomyces have suffered from either poor interlaboratory comparability or insufficient resolution. In particular, the Streptomyces griseus 16S rRNA gene clade is the most challenging and least defined group within the genus Streptomyces in terms of phylogeny. Here we report the results of a multilocus sequence analysis scheme developed to address the phylogeny of this clade. Sequence fragments of six housekeeping genes, atpD, gyrB, recA, rpoB, trpB and 16S rRNA, were obtained for 53 reference strains that represent 45 valid species and subspecies. Analysis of each individual locus confirmed the suitability of loci and the congruence of single-gene trees for concatenation. Concatenated trees of three, four, five and all six genes were constructed, and the stability of the topology and discriminatory power of each tree were analysed. It can be concluded from the results that phylogenetic analysis based on multilocus sequences is more accurate and robust for species delineation within Streptomyces. A multilocus phylogeny of six genes proved to be optimal for elucidating the interspecies relationships within the S. griseus 16S rRNA gene clade. Our multilocus sequence analysis scheme provides a valuable tool that can be applied to other Streptomyces clades for refining the systematic framework of this genus.
KeywordMeSH Terms
Bacterial Typing Techniques
Phylogeny
Sequence Analysis, DNA
14. Ikeda  H, Shin-Ya  K, Nagamitsu  T, Tomoda  H,     ( 2016 )

Biosynthesis of mercapturic acid derivative of the labdane-type diterpene, cyslabdan that potentiates imipenem activity against methicillin-resistant Staphylococcus aureus: cyslabdan is generated by mycothiol-mediated xenobiotic detoxification.

Journal of industrial microbiology & biotechnology 43 (2��3��)
PMID : 26507838  :   DOI  :   10.1007/s10295-015-1694-6    
Abstract >>
Genome mining of cyslabdan-producing Streptomyces cyslabdanicus K04-0144 revealed that a set of four genes, cldA, cldB, cldC, and cldD (the cld cluster), which formed a single transcriptional unit, were involved in the biosynthesis of cyslabdan that potentiates imipenem activity against methicillin-resistant Staphylococcus aureus. Experimental studies supported the heterologous expression of the cld cluster of S. cyslabdanicus K04-0144 in S. avermitilis SUKA22, and transformants carrying the cld cluster produced not only cyslabdan A (1), but also its new derivatives, 17-hydroxyl-1 (2) and 2-hydroxyl-1 (3), in the culture broth. An analysis of diterpene metabolites in the mycelia showed that a large amount of a novel intermediate had accumulated and its structure was elucidated as (7S, 8S, 12E)-8,17-epoxy-7-hydroxylabda-12,14-diene (4). The cld-like cluster (rmn cluster) was also detected in the genome of S. anulatus GM95 by searching our in-house genome databases, and the heterologous expression of the rmn cluster in S. avermitilis SUAK22 demonstrated that the rmn cluster was involved in the biosynthesis of the labdane-type bicyclic diterpene, raimonol (7). CldA/RmnA catalyzed the generation of geranylgeranyl diphosphate (GGPP) from dimethylallyl diphosphate and isopentenyl diphosphate. CldB/RmnB converted GGPP to (+)-copalyl diphosphate, and CldD/RmnD generated labda-8(17),12(E),14-triene (5). CldC introduced two oxygen atoms at C-7 and C-8,17 to generate 4, while RmnC hydroxylated 5 at C-7 to generate 7. The heterologous expression of the cld cluster suggested that four gene products catalyzed to generate 4, but not 1. The deletion mutant of the gene encoding the mycothiol (MSH)-S-conjugate amidase (mca) of S. avermitilis SUKA22 carrying the cld cluster failed to produce 1, but accumulated 4 in the mycelia, whereas S. avermitilis SUKA22 and its mca-deletion mutant carrying the cld cluster both produced the MSH-S-conjugate of 4. The intermediate 4 was converted into the MSH-S-conjugate with MSH, which was achieved through a non-enzymatic nucleophilic reaction. The MSH-S-conjugate of 4 generated was further hydrolyzed to generate the mercapturic acid derivative, 1, by MSH-S-conjugate amidase and 1 was excreted from the mycelia.
KeywordMeSH Terms
Biosynthesis
Genome mining
Heterologous expression
Labdane-type diterpene
Mycothiol
Biosynthesis
Genome mining
Heterologous expression
Labdane-type diterpene
Mycothiol
Biosynthesis
Genome mining
Heterologous expression
Labdane-type diterpene
Mycothiol
Biosynthesis
Genome mining
Heterologous expression
Labdane-type diterpene
Mycothiol
15. Kim  KO, Shin  KS, Kim  MN, Shin  KS, Labeda  DP, Han  JH, Kim  SB,     ( 2012 )

Reassessment of the status of Streptomyces setonii and reclassification of Streptomyces fimicarius as a later synonym of Streptomyces setonii and Streptomyces albovinaceus as a later synonym of Streptomyces globisporus based on combined 16S rRNA/gyrB gene sequence analysis.

International journal of systematic and evolutionary microbiology 62 (Pt 12)
PMID : 22286909  :   DOI  :   10.1099/ijs.0.040287-0    
Abstract >>
The 16S rRNA and gyrB genes of 22 Streptomyces strains belonging to the Streptomyces griseus cluster were sequenced, and their taxonomic positions were re-evaluated. For correct analysis, all of the publicly available sequences of the species were collected and compared with those obtained in this study. Species for which no consensus sequence could be identified were excluded from the phylogenetic analysis. The levels of 16S rRNA gene sequence similarity within the cluster ranged from 98.6 to 100% with a mean value of 99.6 �� 0.3%, and those of the gyrB gene ranged from 93.6 to 99.9% with a mean value of 96.3 �� 1.5%. The observed average nucleotide substitution rate of the gyrB gene was ten times higher than that of the 16S rRNA gene, showing a far higher degree of variation. Strains sharing 99.3% or more gyrB sequence similarity (corresponding to an evolutionary distance of 0.0073) always formed monophyletic groups in both trees. Through the combined analysis of the two genes, clear cases of synonymy could be identified and, according to the priority rule, the assertion of the status of Streptomyces setonii as a distinct species and the reclassification of Streptomyces fimicarius as a later synonym of S. setonii and Streptomyces albovinaceus as a later synonym of Streptomyces globisporus are proposed. Emended descriptions of S. setonii and S. globisporus are provided.
KeywordMeSH Terms
Phylogeny
16. Auffret  M, Pilote  A, Proulx  E, Proulx  D, Vandenberg  G, Villemur  R,     ( 2011 )

Establishment of a real-time PCR method for quantification of geosmin-producing Streptomyces spp. in recirculating aquaculture systems.

Water research 45 (20)
PMID : 22060964  :   DOI  :   10.1016/j.watres.2011.10.020    
Abstract >>
Geosmin and 2-methylisoborneol (MIB) have been associated with off-flavour problems in fish and seafood products, generating a strong negative impact for aquaculture industries. Although most of the producers of geosmin and MIB have been identified as Streptomyces species or cyanobacteria, Streptomyces spp. are thought to be responsible for the synthesis of these compounds in indoor recirculating aquaculture systems (RAS). The detection of genes involved in the synthesis of geosmin and MIB can be a relevant indicator of the beginning of off-flavour events in RAS. Here, we report a real-time polymerase chain reaction (qPCR) protocol targeting geoA sequences that encode a germacradienol synthase involved in geosmin synthesis. New geoA-related sequences were retrieved from eleven geosmin-producing Actinomycete strains, among them two Streptomyces strains isolated from two RAS. Combined with geoA-related sequences available in gene databases, we designed primers and standards suitable for qPCR assays targeting mainly Streptomyces geoA. Using our qPCR protocol, we succeeded in measuring the level of geoA copies in sand filter and biofilters in two RAS. This study is the first to apply qPCR assays to detect and quantify the geosmin synthesis gene (geoA) in RAS. Quantification of geoA in RAS could permit the monitoring of the level of geosmin producers prior to the occurrence of geosmin production. This information will be most valuable for fish producers to manage further development of off-flavour events.
KeywordMeSH Terms
Aquaculture
17.     ( 1997 )

ScCypB is a novel second cytosolic cyclophilin from Streptomyces chrysomallus which is phylogenetically distant from ScCypA.

Microbiology (Reading, England) 143 (Pt 1) (N/A)
PMID : 9025285  :   DOI  :   10.1099/00221287-143-1-117    
Abstract >>
A novel second streptomycete cyclophilin gene-designated sccypB-was isolated from a cosmid gene library of Streptomyces chrysomallus by using as gene probe a fragment of the previously isolated cyclophilin gene sccypA of the same organism. From its sequence the gene sccypB should encode a protein of M(r) 18868. Expression of sccypB in Escherichia coli as a hexaHis-tagged fusion protein (H6ScCypB) and enzymic characterization of the purified protein showed that, like ScCypA, ScCypB is a peptidyl-prolyl cis-trans isomerase (PPIase). The specific activity and substrate specificity of the enzyme were comparable to that of ScCypA, but it was threefold less sensitive to inhibition by cyclosporin A (CsA). In contrast to ScCypA, which is abundant and exists in free and liganded form, ScCypB was 50- to 100-fold less abundant in cytosol-derived protein fractions of S. chrysomallus or Streptomyces lividans, as revealed by Western blot analyses, suggesting a specialized function for this enzyme in the streptomycete cell. Both sccypB and sccypA were found to be present as single copies in the genome of S. chrysomallus and hybridized to a single band in chromosomal DNAs of other streptomycetes. High-level expression of sccypB as well as of sccypA cloned into the expression vector pIJ702 did not produce detectable changes in growth and morphology of S. chrysomallus and S. lividans. Calculations of similarities to known cyclophilin sequences and construction of phylogenetic trees indicated that ScCypB and ScCypA are phylogenetically distant from each other. While ScCypA is clearly related to the eukaryotic cyclophilins, the analyses show the sequence of ScCypB to be the most divergent of all cyclophilin sequences, indicating that it possibly constitutes a cluster by itself.
KeywordMeSH Terms
Genes, Bacterial
18.     ( 1994 )

Streptomyces chrysomallus FKBP-33 is a novel immunophilin consisting of two FK506 binding domains; its gene is transcriptionally coupled to the FKBP-12 gene.

The EMBO journal 13 (15)
PMID : 8062824  :   PMC  :   PMC395250    
Abstract >>
The nucleotide sequence of the region 5' to the fkbA gene, encoding the Streptomyces chrysomallus FK506 binding protein (FKBP-12), revealed an open reading frame (fkbB) encoding a protein of 312 amino acids, with an M(r) of approximately 33,000. FkbB and fkbA appear to be co-transcribed under the control of a promoter upstream of fkbB. The presumptive protein encoded by fkbB would be an FKBP (designated FKBP-33) consisting of two FK506 binding domains with 43 and 32% sequence identity to FKBP-12 and a signal peptide sequence characteristic of bacterial membrane lipoproteins. The portion of the gene comprising the two FKBP domains, as well as each individual domain, were expressed as fusion proteins in Escherichia coli and purified. Each expressed domain, as well as FKBP-33 itself, possesses peptidyl-prolyl cis-trans isomerase activity, though with much lower specific activities than FKBP-12. FKBP-33 is located in the cell membrane of S.chrysomallus and of other streptomycetes, as predicted from the presence of the signal peptide sequence. Pulse-chase experiments with radioactive palmitate in whole cells revealed significant labelling of FKBP-33, which probably carries palmitate at its N-terminus and an additional diacylglycerol residue attached to the N-terminal cysteine in thioether linkage. The two domains of FKBP-33 showed considerable homology with numerous eukaryotic and prokaryotic FKB domains. Calculations of phylogenetic relationships indicate with high probability that the two domains of the protein have arisen by a double gene duplication of fkbA lying in tandem to fkbB.
KeywordMeSH Terms
Bacterial Proteins
19.     ( 1993 )

The pur8 gene from the pur cluster of Streptomyces alboniger encodes a highly hydrophobic polypeptide which confers resistance to puromycin.

European journal of biochemistry 218 (3)
PMID : 7916693  :   DOI  :   10.1111/j.1432-1033.1993.tb18454.x    
Abstract >>
A novel puromycin-resistance determinant (pur8) was isolated from one end of the pur cluster that encodes the puromycin biosynthetic pathway from Streptomyces alboniger and expressed in Streptomyces lividans. The gene pur8 induced antibiotic resistance that was highly specific for puromycin. The nucleotide sequence of pur8 contains an open reading frame of 1512 bp whose deduced amino acid sequence encodes a polypeptide (Pur8) with 14 possible transmembrane-spanning segments. It shows significant similarities to other known or putative transmembrane proteins, including a number which confer drug resistance in a variety of antibiotic-producing Streptomyces, Gram-positive and Gram-negative bacteria, and some solute transporters of prokaryotic and eukaryotic origin. As is probably the case for most of these proteins, Pur8 may be involved in active puromycin efflux energized by a proton-dependent electrochemical gradient. In addition, it could be implicated in secreting N-acetylpuromycin, the last intermediate of the biosynthesis pathway, to the environment.
KeywordMeSH Terms
Gene Expression
Membrane Transport Proteins
20. Amagai  K, Ikeda  H, Hashimoto  J, Kozone  I, Izumikawa  M, Kudo  F, Eguchi  T, Nakamura  T, Osada  H, Takahashi  S, Shin-Ya  K,     ( 2017 )

Identification of a gene cluster for telomestatin biosynthesis and heterologous expression using a specific promoter in a clean host.

Scientific reports 7 (1)
PMID : 28611443  :   DOI  :   10.1038/s41598-017-03308-5     PMC  :   PMC5469769    
Abstract >>
Telomestatin, a strong telomerase inhibitor with G-quadruplex stabilizing activity, is a potential therapeutic agent for treating cancers. Difficulties in isolating telomestatin from microbial cultures and in chemical synthesis are bottlenecks impeding the wider use. Therefore, improvement in telomestatin production and structural diversification are required for further utilization and application. Here, we discovered the gene cluster responsible for telomestatin biosynthesis, and achieved production of telomestatin by heterologous expression of this cluster in the engineered Streptomyces avermitilis SUKA strain. Utilization of an optimal promoter was essential for successful production. Gene disruption studies revealed that the tlsB, tlsC, and tlsO-T genes play key roles in telomestatin biosynthesis. Moreover, exchanging TlsC core peptide sequences resulted in the production of novel telomestatin derivatives. This study sheds light on the expansion of chemical diversity of natural peptide products for drug development.
KeywordMeSH Terms
Multigene Family
Promoter Regions, Genetic
21.     ( 1998 )

Molecular analysis of a gene encoding a cell-bound esterase from Streptomyces chrysomallus.

Journal of bacteriology 180 (23)
PMID : 9829953  :   PMC  :   PMC107730    
Abstract >>
A gene (estA) encoding a 42-kDa cell-bound esterase, EstA, was found to be located 75 bp upstream of the cyclophilin A gene (cypA) of Streptomyces chrysomallus. Western blot analysis revealed the presence of EstA (42 kDa) in cell extracts of S. chrysomallus X2 and Streptomyces lividans. EstA specifically hydrolyzes short-chain p-nitrophenyl esters. EstA formation starts at the end of growth phase, and its activity level remains constant throughout stationary phase. Expression of estA from the melanin (mel) promoter in plasmid pIJ702 led to a substantial increase of total esterase activity in streptomycetes.
KeywordMeSH Terms
Bacterial Proteins
Genes, Bacterial
22.     ( 1998 )

StgR, a new Streptomyces alboniger member of the LysR family of transcriptional regulators.

Molecular & general genetics : MGG 259 (5)
PMID : 9790578  :   DOI  :   10.1007/s004380050838    
Abstract >>
A 3240-bp DNA fragment, located next to the puromycin biosynthetic gene cluster of Streptomyces alboniger, contains three complete ORFs in the order: stgA, stgU and stgR. The transcriptional orientation of stgA is opposite to that of stgU and stgR. Each gene is expressed from its own promoter, although stgU and stgR can be cotranscribed. The deduced amino acid sequences of their products present similarities to a variety of pyridoxal-phosphate-dependent aspartate aminotransferases (StgA), several proteins of unknown function (StgU), and the LysR-type of transcriptional regulators (StgR). In a delta stgR null mutant of S. alboniger, transcription of stgA and stgU is increased with respect to that in the wild type. In addition, in vivo experiments with promoter-probe plasmids indicated that in the delta stgR mutant, stgA- or stgU-promoter-dependent expression of the reporter gene was up to three-fold higher than in the wild type. Taken together, these results indicate that StgR is a LysR-type transcriptional repressor of both stgA and stgU.
KeywordMeSH Terms
23.     ( 1998 )

Structural elements of the Streptomyces oriC region and their interactions with the DnaA protein.

Microbiology (Reading, England) 144 (Pt 5) (N/A)
PMID : 9611803  :   DOI  :   10.1099/00221287-144-5-1281    
Abstract >>
Streptomycetes differ from other prokaryotic organisms in their mycelial life cycle and in possessing a large, linear, GC-rich chromosome. To deduce structural features of the Streptomyces origin of chromosomal replication, the oriC sequences of three Streptomyces species (S. antibioticus, S. chrysomallus and S. lividans) were compared. In Streptomyces, the oriC region contains 19 DnaA boxes whose location, orientation and spacing are conserved. The consensus sequence of the DnaA box identified within Streptomyces oriC is (T/C)(T/C)(G/A/C)TCCACA (preferred bases underlined). The interactions of DnaA with DNA fragments containing single, two or three DnaA boxes were studied using surface plasmon resonance. The dissociation constant (KD) for specific binding of individual DnaA boxes varied between 12 and 78 nM. Streptomyces oriC does not contain the three AT-rich 13-mer direct repeats present in the 5' part of the Escherichia coli oriC region. However, short AT-rich sequences are distributed among the DnaA boxes of Streptomyces oriC. Repeated attempts to unwind Streptomyces oriC have been unsuccessful. It remains to be elucidated whether DnaA interacts with putative accessory proteins which help in unwinding Streptomyces oriC.
KeywordMeSH Terms
Replication Origin

331, Shih-Pin Rd., Hsinchu 30062, Taiwan

Phone: +886-3-5223191

E-mail: bcrcweb@firdi.org.tw

web maintainance: +886-3-5223191 ext 593

Copyright © 2018.BCRC All rights reserved.The duplication or use of information and data such as texts or images or any linkage the website at the "bcrc.firdi.org.tw" is only permitted with the indication of the source or with prior approval by the BCRC(Bioresource Collection and Research Center).