BCRC Strain Collection Catalog & Shopping Cart

  Home / BCRC Content / 11826 / 

Return

  Research Article

The information shown in this page was generated using the cross-referenced linkage within public domain database between their strains and BCRC related strains. Usually the information provided from public domain databases varies with different confidences and errors, BCRC provides the related information here at best effort, but BCRC doesn't take the responsibility about the correctness of the information provided here.

1. Bililign  T, Hyun  CG, Williams  JS, Czisny  AM, Thorson  JS,     ( 2004 )

The hedamycin locus implicates a novel aromatic PKS priming mechanism.

Chemistry & biology 11 (7)
PMID : 15271354  :   DOI  :   10.1016/j.chembiol.2004.04.016    
Abstract >>
The biosynthetic gene cluster for the pluramycin-type antitumor antibiotic hedamycin has been cloned from Streptomyces griseoruber. Sequence analysis of the 45.6 kb region revealed a variety of unique features such as a fabH homolog (KSIII), an acyltransferase (AT) gene, a set of type I polyketide synthase (PKS) genes, and two putative C-glycosyltransferase genes. As the first report of the cloning of the biosynthetic gene cluster for the pluramycin antibiotics, this work suggests that the biosynthesis of pluramycins utilize an iterative type I PKS system for the generation of a novel starter unit that subsequently primes the type II PKS system. It also implicates the involvement of a second catalytic ketosynthase (KSIII) to regulate this unusual priming step. Gene disruption is used to confirm the importance of both type I and II PKS genes for the biosynthesis of hedamycin.
KeywordMeSH Terms
Chromosome Mapping
2. Javidpour  P, Das  A, Khosla  C, Tsai  SC,     ( 2011 )

Structural and biochemical studies of the hedamycin type II polyketide ketoreductase (HedKR): molecular basis of stereo- and regiospecificities.

Biochemistry 50 (34)
PMID : 21776967  :   DOI  :   10.1021/bi2006866     PMC  :   PMC3175028    
Abstract >>
Bacterial aromatic polyketides that include many antibiotic and antitumor therapeutics are biosynthesized by the type II polyketide synthase (PKS), which consists of 5-10 stand-alone enzymatic domains. Hedamycin, an antitumor antibiotic polyketide, is uniquely primed with a hexadienyl group generated by a type I PKS followed by coupling to a downstream type II PKS to biosynthesize a 24-carbon polyketide, whose C9 position is reduced by hedamycin type II ketoreductase (hedKR). HedKR is homologous to the actinorhodin KR (actKR), for which we have conducted extensive structural studies previously. How hedKR can accommodate a longer polyketide substrate than the actKR, and the molecular basis of its regio- and stereospecificities, is not well understood. Here we present a detailed study of hedKR that sheds light on its specificity. Sequence alignment of KRs predicts that hedKR is less active than actKR, with significant differences in substrate/inhibitor recognition. In vitro and in vivo assays of hedKR confirmed this hypothesis. The hedKR crystal structure further provides the molecular basis for the observed differences between hedKR and actKR in the recognition of substrates and inhibitors. Instead of the 94-PGG-96 motif observed in actKR, hedKR has the 92-NGG-94 motif, leading to S-dominant stereospecificity, whose molecular basis can be explained by the crystal structure. Together with mutations, assay results, docking simulations, and the hedKR crystal structure, a model for the observed regio- and stereospecificities is presented herein that elucidates how different type II KRs recognize substrates with different chain lengths, yet precisely reduce only the C9-carbonyl group. The molecular features of hedKR important for regio- and stereospecificities can potentially be applied to biosynthesize new polyketides via protein engineering that rationally controls polyketide ketoreduction.
KeywordMeSH Terms
3. Laskaris  P, Tolba  S, Calvo-Bado  L, Wellington  EM, Wellington  L,     ( 2010 )

Coevolution of antibiotic production and counter-resistance in soil bacteria.

Environmental microbiology 12 (3)
PMID : 20067498  :   DOI  :   10.1111/j.1462-2920.2009.02125.x    
Abstract >>
We present evidence for the coexistence and coevolution of antibiotic resistance and biosynthesis genes in soil bacteria. The distribution of the streptomycin (strA) and viomycin (vph) resistance genes was examined in Streptomyces isolates. strA and vph were found either within a biosynthetic gene cluster or independently. Streptomyces griseus strains possessing the streptomycin cluster formed part of a clonal complex. All S. griseus strains possessing solely strA belonged to two clades; both were closely related to the streptomycin producers. Other more distantly related S. griseus strains did not contain strA. S. griseus strains with only vph also formed two clades, but they were more distantly related to the producers and to one another. The expression of the strA gene was constitutive in a resistance-only strain whereas streptomycin producers showed peak strA expression in late log phase that correlates with the switch on of streptomycin biosynthesis. While there is evidence that antibiotics have diverse roles in nature, our data clearly support the coevolution of resistance in the presence of antibiotic biosynthetic capability within closely related soil dwelling bacteria. This reinforces the view that, for some antibiotics at least, the primary role is one of antibiosis during competition in soil for resources.
KeywordMeSH Terms
Soil Microbiology

331, Shih-Pin Rd., Hsinchu 30062, Taiwan

Phone: +886-3-5223191

E-mail: bcrcweb@firdi.org.tw

web maintainance: +886-3-5223191 ext 593

Copyright © 2018.BCRC All rights reserved.The duplication or use of information and data such as texts or images or any linkage the website at the "bcrc.firdi.org.tw" is only permitted with the indication of the source or with prior approval by the BCRC(Bioresource Collection and Research Center).