| 1. |
van Beilen JB,
Eggink G,
Enequist H,
Bos R,
Witholt B,
( 1992 ) DNA sequence determination and functional characterization of the OCT-plasmid-encoded alkJKL genes of Pseudomonas oleovorans. PMID : 1453953 : DOI : 10.1111/j.1365-2958.1992.tb01769.x Abstract >>
The alkBFGHJKL and alkST operons encode enzymes that allow Pseudomonas putida (oleovorans) to metabolize alkanes. In this paper we report the nucleotide sequence of a 4592 bp region of the alkBFGHJKL operon encoding the AlkJ, AlkK and AlkL polypeptides. The alkJ gene encodes a protein of 59 kilodaltons. The predicted amino acid sequence shows significant homology with four flavin proteins: choline dehydrogenase, a glucose dehydrogenase and two oxidases. AlkJ is membrane-bound and converts aliphatic medium-chain-length alcohols into aldehydes. The properties of AlkJ suggest that it is linked to the electron transfer chain. AlkJ is necessary for growth on alkanes only in P. putida alcohol dehydrogenase (AlcA) mutants. AlkK is homologous to a range of proteins which act by an ATP-dependent covalent binding of AMP to their substrate. This list includes the acetate, coumarate and long-chain fatty acid CoA ligases. The alkK gene complements a fadD mutation in Escherichia coli, which shows that it indeed encodes an acyl-CoA synthetase. AlkK is a 60 kilodalton protein located in the cytoplasm. AlkL is homologous to OmpW, a Vibrio cholerae outer membrane protein of unknown function, and a hypothetical polypeptide encoded by ytt4 in E. coli. AlkL, OmpW and Ytt4 all have a signal peptide and end with a sequence characteristic of outer membrane proteins. The alkL gene product was found in the outer membrane of E. coli W3110 containing the alk-genes. The alkL gene can be deleted without a clear effect on growth rate. Its function remains unknown. The G+C content of the alkJKL genes is 45%, identical to that of the alkBFGH genes, and significantly lower than the G+C content of the OCT-plasmid and the P. putida chromosome.
|
2. |
Shanklin J,
Whittle E,
( 2003 ) Evidence linking the Pseudomonas oleovorans alkane omega-hydroxylase, an integral membrane diiron enzyme, and the fatty acid desaturase family. PMID : 12804773 : DOI : 10.1016/s0014-5793(03)00529-5 Abstract >>
Pseudomonas oleovorans alkane omega-hydroxylase (AlkB) is an integral membrane diiron enzyme that shares a requirement for iron and oxygen for activity in a manner similar to that of the non-heme integral membrane desaturases, epoxidases, acetylenases, conjugases, ketolases, decarbonylase and methyl oxidases. No overall sequence similarity is detected between AlkB and these desaturase-like enzymes by computer algorithms; however, they do contain a series of histidine residues in a similar relative positioning with respect to hydrophobic regions thought to be transmembrane domains. To test whether these conserved histidine residues are functionally equivalent to those of the desaturase-like enzymes we used scanning alanine mutagenesis to test if they are essential for activity of AlkB. These experiments show that alanine substitution of any of the eight conserved histidines results in complete inactivation, whereas replacement of three non-conserved histidines in close proximity to the conserved residues, results in only partial inactivation. These data provide the first experimental support for the hypotheses: (i) that the histidine motif in AlkB is equivalent to that in the desaturase-like enzymes and (ii) that the conserved histidine residues play a vital role such as coordinating the Fe ions comprising the diiron active site.
|
3. |
Watanabe T,
Fujihara H,
Furukawa K,
( 2003 ) Characterization of the second LysR-type regulator in the biphenyl-catabolic gene cluster of Pseudomonas pseudoalcaligenes KF707. PMID : 12775695 : DOI : 10.1128/jb.185.12.3575-3582.2003 PMC : PMC156218 Abstract >>
Pseudomonas pseudoalcaligenes KF707 possesses a biphenyl-catabolic (bph) gene cluster consisting of bphR1A1A2-(orf3)-bphA3A4BCX0X1X2X3D. The bphR1 (formerly orf0) gene product, which belongs to the GntR family, is a positive regulator for itself and bphX0X1X2X3D. Further analysis in this study revealed that a second regulator belonging to the LysR family (designated bphR2) is involved in the regulation of the bph genes in KF707. The bphR2 gene was not located near the bph gene cluster, and its product (BphR2) exhibited a high level of similarity to NahR (the naphthalene- and salicylate-catabolic regulator belonging to the LysR family) in plasmid NAH7 of Pseudomonas putida. A strain containing a disrupted bphR2 gene failed to grow on biphenyl as a sole source of carbon, and the BphD (2-hydroxy-6-oxo-6-phenylhexa-2,4-dienoic acid hydrolase) activity was significantly reduced compared to that of wild-type strain KF707. Furthermore, the same strain exhibited extremely low transcription of bphR1, bphA1, bphC, bphX0, and bphD. However, when the bphR2 gene was provided in trans to the bphR2-disrupted strain, the transcription level of these genes was restored. These results indicate that bphR2 regulates the bph genes positively as a second regulator together with BphR1.
|
4. |
van Beilen JB,
Penninga D,
Witholt B,
( 1992 ) Topology of the membrane-bound alkane hydroxylase of Pseudomonas oleovorans. PMID : 1315749 : Abstract >>
The Pseudomonas oleovorans alkane hydroxylase is an integral cytoplasmic membrane protein that is expressed and active in both Escherichia coli and P. oleovorans. Its primary sequence contains eight hydrophobic stretches that could span the membrane as alpha-helices. The topology of alkane hydroxylase was studied in E. coli using protein fusions linking different amino-terminal fragments of the alkane hydroxylase (AlkB) to alkaline phosphatase (PhoA) and to beta-galactosidase (LacZ). Four AlkB-PhoA fusions were constructed using transposon TnphoA. Site-directed mutagenesis was used to create PstI sites at 12 positions in AlkB. These sites were used to create AlkB-PhoA and AlkB-LacZ fusions. With respect to alkaline phosphatase and beta-galactosidase activity each set of AlkB-PhoA and AlkB-LacZ fusions revealed the expected complementary activities. At three positions, PhoA fusions were highly active, whereas the corresponding LacZ fusions were the least active. At all other positions the PhoA fusions were almost completely inactive, but the corresponding LacZ fusions were highly active. These data predict a model for alkane hydroxylase containing six transmembrane segments. In this model the amino terminus, two hydrophilic loops, and a large carboxyl-terminal domain are located in the cytoplasm. Only three very short loops near amino acid positions 52, 112, and 251 are exposed to the periplasm.
|
5. |
Marín MM,
Yuste L,
Rojo F,
( 2003 ) Differential expression of the components of the two alkane hydroxylases from Pseudomonas aeruginosa. PMID : 12730186 : DOI : 10.1128/jb.185.10.3232-3237.2003 PMC : PMC154056 Abstract >>
Oxidation of n-alkanes in bacteria is normally initiated by an enzyme system formed by a membrane-bound alkane hydroxylase and two soluble proteins, rubredoxin and rubredoxin reductase. Pseudomonas aeruginosa strains PAO1 and RR1 contain genes encoding two alkane hydroxylases (alkB1 and alkB2), two rubredoxins (alkG1 and alkG2), and a rubredoxin reductase (alkT). We have localized the promoters for these genes and analyzed their expression under different conditions. The alkB1 and alkB2 genes were preferentially expressed at different moments of the growth phase; expression of alkB2 was highest during the early exponential phase, while alkB1 was induced at the late exponential phase, when the growth rate decreased. Both genes were induced by C(10) to C(22)/C(24) alkanes but not by their oxidation derivatives. However, the alkG1, alkG2, and alkT genes were expressed at constant levels in both the absence and presence of alkanes.
|
6. |
Fiedler S,
Steinbüchel A,
Rehm BH,
( 2002 ) The role of the fatty acid beta-oxidation multienzyme complex from Pseudomonas oleovorans in polyhydroxyalkanoate biosynthesis: molecular characterization of the fadBA operon from P. oleovorans and of the enoyl-CoA hydratase genes phaJ from P. oleovorans and Pseudomonas putida. PMID : 12115060 : DOI : 10.1007/s00203-002-0444-0 Abstract >>
In order to investigate the role of the putative epimerase function of the beta-oxidation multienzyme complex (FadBA) in the provision of (R)-3-hydroxyacyl-CoA thioesters for medium-chain-length polyhydroxyalkanoate (PHA(MCL)) biosynthesis, the fadBA(Po) operon of Pseudomonas oleovorans was cloned and characterized. The fadBA(Po) operon and a class-II PHA synthase gene of Pseudomonas aeruginosa were heterologously co-expressed in Escherichia coli to determine whether the putative epimerase function of FadBA(Po) has the ability to provide precursors for PHA accumulation in a non-PHA-accumulating bacterium. Cultivation studies with fatty acids as carbon source revealed that FadBA(Po) did not mediate PHA(MCL) biosynthesis in the E. coli wild-type strain harboring a PHA synthase gene. However, PHA accumulation was strongly impaired in a recombinant E. coli fadB mutant, which harbored a PHA synthase gene. These data indicate that in pseudomonads FadBA does not possess the inherent property, based on a putative epimerase function, to provide the (R)-enantiomer of 3-hydroxyacyl-CoA efficiently and that other linking enzymes are required to efficiently channel intermediates of beta-oxidation towards PHA(MCL) biosynthesis. However, the phaJ gene from P. oleovorans and from Pseudomonas putida, both of which encoded a 3- Re enoyl-CoA hydratase, was identified. The co-expression of phaJ(Po/Pp) with either a class-II PHA synthase gene or the PHA synthase gene from Aeromonas punctata in E. coli revealed that PhaJ(Po/Pp) mediated biosynthesis of either PHA(MCL), contributing to about 1% of cellular dry mass, or of poly(3-hydroxybutyrate- co-3-hydroxyhexanoate), contributing to 3.6% of cellular dry mass, when grown on decanoate. These data indicate that FadBA(Po)does not mediate the provision of (R)-3-hydroxyacyl-CoA, which resembles FadBA of non-PHA-accumulating bacteria, and that 3- Re enoyl-CoA hydratases are required to divert intermediates of fatty acid beta-oxidation towards PHA biosynthesis in P. oleovorans.
|
7. |
Bellingham NF,
Morgan JA,
Saunders JR,
Winstanley C,
( 2001 ) Flagellin gene sequence variation in the genus Pseudomonas. PMID : 11518318 : DOI : 10.1078/0723-2020-00031 Abstract >>
Flagellin gene (fliC) sequences from 18 strains of Pseudomonas sensu stricto representing 8 different species, and 9 representative fliC sequences from other members of the gamma sub-division of proteobacteria, were compared. Analysis was performed on N-terminal, C-terminal and whole fliC sequences. The fliC analyses confirmed the inferred relationship between P. mendocina, P. oleovorans and P. aeruginosa based on 16S rRNA sequence comparisons. In addition, the analyses indicated that P. putida PRS2000 was closely related to P. fluorescens SBW25 and P. fluorescens NCIMB 9046T, but suggested that P. putida PaW8 and P. putida PRS2000 were more closely related to other Pseudomonas spp. than they were to each other. There were a number of inconsistencies in inferred evolutionary relationships between strains, depending on the analysis performed. In particular, whole flagellin gene comparisons often differed from those obtained using N- and C-terminal sequences. However, there were also inconsistencies between the terminal region analyses, suggesting that phylogenetic relationships inferred on the basis of fliC sequence should be treated with caution. Although the central domain of fliC is highly variable between Pseudomonas strains, there was evidence of sequence similarities between the central domains of different Pseudomonas fliC sequences. This indicates the possibility of recombination in the central domain of fliC genes within Pseudomonas species, and between these genes and those from other bacteria.
|
8. |
Zhang G,
Hang X,
Green P,
Ho KP,
Chen GQ,
( 2001 ) PCR cloning of type II polyhydroxyalkanoate biosynthesis genes from two Pseudomonas strains. PMID : 11430409 : DOI : 10.1111/j.1574-6968.2001.tb10637.x Abstract >>
Two polyhydroxyalkanoate synthase genes, phaC1 from Pseudomonas pseudoalcaligenes HBQ06 and phaC2 from Pseudomonas nitroreducens 0802, were cloned using a PCR cloning strategy based on the type II pha loci property of Pseudomonas strains. The complete open reading frames (ORFs) of phaC1 (P. nitroreducens HBQ06) and phaC2 (P. nitroreducens 0802) were identified from the PCR products. Using the sequence information, the complete PHA synthase genes were PCR cloned directly from the genomic DNA and expressed in Escherichia coli as confirmed by Fourier transform-infrared spectroscopy and gas chromatography. The differences between PhaC1 and PhaC2 were analyzed and the two proteins were suggested to contain different functions and evolution history.
|
9. |
van Beilen JB,
Panke S,
Lucchini S,
Franchini AG,
Röthlisberger M,
Witholt B,
( 2001 ) Analysis of Pseudomonas putida alkane-degradation gene clusters and flanking insertion sequences: evolution and regulation of the alk genes. PMID : 11390693 : DOI : 10.1099/00221287-147-6-1621 Abstract >>
The Pseudomonas putida GPo1 (commonly known as Pseudomonas oleovorans GPo1) alkBFGHJKL and alkST gene clusters, which encode proteins involved in the conversion of n-alkanes to fatty acids, are located end to end on the OCT plasmid, separated by 9.7 kb of DNA. This DNA segment encodes, amongst others, a methyl-accepting transducer protein (AlkN) that may be involved in chemotaxis to alkanes. In P. putida P1, the alkBFGHJKL and alkST gene clusters are flanked by almost identical copies of the insertion sequence ISPpu4, constituting a class 1 transposon. Other insertion sequences flank and interrupt the alk genes in both strains. Apart from the coding regions of the GPo1 and P1 alk genes (80-92% sequence identity), only the alkB and alkS promoter regions are conserved. Competition experiments suggest that highly conserved inverted repeats in the alkB and alkS promoter regions bind ALKS:
|
10. |
Perry A,
Lian LY,
Scrutton NS,
( 2001 ) Two-iron rubredoxin of Pseudomonas oleovorans: production, stability and characterization of the individual iron-binding domains by optical, CD and NMR spectroscopies. PMID : 11171083 : DOI : 10.1042/0264-6021:3540089 PMC : PMC1221632 Abstract >>
A minigene encoding the C-terminal domain of the 2Fe rubredoxin of Pseudomonas oleovorans was created from the parental alk G gene contained in the expression plasmid pKK223-3. The vector directed the high-level production of the C-terminal domain of this rubredoxin; a simple procedure was used to purify the recombinant domain in the 1Fe form. The 1Fe form of the C-terminal domain was readily converted into the apoprotein and cadmium forms after precipitation with trichloroacetic acid and resolubilization in the presence or absence of cadmium chloride respectively. In steady-state assays, the recombinant 1Fe C-terminal domain is redox-active and able to transfer electrons from reduced rubredoxin reductase to cytochrome c. The absorption spectrum and dichroic features of the CD spectrum for the iron- and cadmium-substituted C-terminal domain are similar to those reported for the iron- and cadmium-substituted Desulfovibrio gigas rubredoxin [Henehen, Pountney, Zerbe and Vasak (1993) Protein Sci. 2, 1756-1764]. Difference absorption spectroscopy of the cadmium-substituted C-terminal domain revealed the presence of four Gaussian-resolved maxima at 202, 225, 240 and 276 nm; from J?rgensen's electronegativity theory, the 240 nm band is attributable to a CysS-Cd(II) charge-transfer excitation. Attempts to express the N-terminal domain of the 2Fe rubredoxin directly from a minigene were unsuccessful. However, the N-terminal domain was isolated through cleavage of an engineered 2Fe rubredoxin in which a factor Xa proteolysis site had been introduced into the putative interdomain linker. The N-terminal domain is characterized by absorption spectra typical of the 1Fe rubredoxins. The domain is folded as determined by CD and NMR spectroscopies and is redox-active. However, the N-terminal domain is less stable than the isolated C-terminal domain, a finding consistent with the known properties of the full-length 2Fe and cadmium-substituted Ps. oleovorans rubredoxin.
|
11. |
Inoue R,
Watanabe T,
( 2000 ) Versatile transcription of biphenyl catabolic bph operon in Pseudomonas pseudoalcaligenes KF707. PMID : 10900199 : DOI : 10.1074/jbc.M003023200 Abstract >>
Pseudomonas pseudoalcaligenes KF707 possesses a chromosomally encoded bph gene cluster responsible for the catabolism of biphenyl/polychlorinated biphenyls. The gene cluster consists of (orf0)bphA1A2(orf3)bphA3A4BCX0X1X2X3D. We studied the role of orf0 and transcription in the KF707 bph operon. Primer extension analyses revealed that at least as many as six transcriptional initiation sites exist upstream of orf0, bphA1, bphX0, bphX1, and bphD, including two upstream of bphD. The orf0-disruptant failed to grow on biphenyl but accumulated large amounts of the biphenyl ring meta-cleavage yellow compound (2-hydroxy-6-oxo-6-phenylhexa-2, 4-dienoate). Western blot analysis revealed that ORF0 protein is inducibly expressed in KF707 in the presence of biphenyl. Gel shift assay revealed that ORF0 directly binds to the orf0 operator region. This binding was greatly enhanced by addition of the biphenyl ring meta-cleavage yellow compound. These results indicated that orf0, bphA1A2(orf3)bphA3A4BC and bphX0X1X2X3D are independently transcribed, and that ORF0 protein belonging to the GntR family is involved in the regulation of the bph operon in KF707 and is absolutely required for the expression of orf0 and bphX0X1X2X3D.
|
12. |
He Z,
Nadeau LJ,
Paoli GC,
Davis JK,
( 2000 ) Sequence analysis and initial characterization of two isozymes of hydroxylaminobenzene mutase from Pseudomonas pseudoalcaligenes JS45. PMID : 10877793 : DOI : 10.1128/aem.66.7.2965-2971.2000 PMC : PMC92098 Abstract >>
Pseudomonas pseudoalcaligenes JS45 grows on nitrobenzene by a partially reductive pathway in which the intermediate hydroxylaminobenzene is enzymatically rearranged to 2-aminophenol by hydroxylaminobenzene mutase (HAB mutase). The properties of the enzyme, the reaction mechanism, and the evolutionary origin of the gene(s) encoding the enzyme are unknown. In this study, two open reading frames (habA and habB), each encoding an HAB mutase enzyme, were cloned from a P. pseudoalcaligenes JS45 genomic library and sequenced. The open reading frames encoding HabA and HabB are separated by 2.5 kb and are divergently transcribed. The deduced amino acid sequences of HabA and HabB are 44% identical. The HAB mutase specific activities in crude extracts of Escherichia coli clones synthesizing either HabA or HabB were similar to the specific activities of extracts of strain JS45 grown on nitrobenzene. HAB mutase activity in E. coli extracts containing HabB withstood heating at 85 degrees C for 10 min, but extracts containing HabA were inactivated when they were heated at temperatures above 60 degrees C. HAB mutase activity in extracts of P. pseudoalcaligenes JS45 grown on nitrobenzene exhibited intermediate temperature stability. Although both the habA gene and the habB gene conferred HAB mutase activity when they were separately cloned and expressed in E. coli, reverse transcriptase PCR analysis indicated that only habA is transcribed in P. pseudoalcaligenes JS45. A mutant strain derived from strain JS45 in which the habA gene was disrupted was unable to grow on nitrobenzene, which provided physiological evidence that HabA is involved in the degradation of nitrobenzene. A strain in which habB was disrupted grew on nitrobenzene. Gene Rv3078 of Mycobacterium tuberculosis H37Rv encodes a protein whose deduced amino acid sequence is 52% identical to the HabB amino acid sequence. E. coli containing M. tuberculosis gene Rv3078 cloned into pUC18 exhibited low levels of HAB mutase activity. Sequences that exhibit similarity to transposable element sequences are present between habA and habB, as well as downstream of habB, which suggests that horizontal gene transfer resulted in acquisition of one or both of the hab genes.
|
13. |
Nadeau LJ,
He Z,
( 2000 ) Characterization of hydroxylaminobenzene mutase from pNBZ139 cloned from Pseudomonas pseudoalcaligenes JS45. A highly associated SDS-stable enzyme catalyzing an intramolecular transfer of hydroxy groups. PMID : 10672020 : DOI : 10.1046/j.1432-1327.2000.01107.x Abstract >>
Hydroxylaminobenzene mutase is the enzyme that converts intermediates formed during initial steps in the degradation of nitrobenzene to a novel ring-fission lower pathway in Pseudomonas pseudoalcaligenes JS45. The mutase catalyzes a rearrangement of hydroxylaminobenzene to 2-aminophenol. The mechanism of the reactions and the properties of the enzymes are unknown. In crude extracts, the hydroxylaminobenzene mutase was stable at SDS concentrations as high as 2%. A procedure including Hitrap-SP, Hitrap-Q and Cu(II)-chelating chromatography was used to partially purify the enzyme from an Escherichia coli clone. The partially purified enzyme was eluted in the void volume of a Superose-12 gel-filtration column even in the presence of 0.05% SDS in 25 mM Tris/HCl buffer, which indicated that it was highly associated. When the enzymatic conversion of hydroxylaminobenzene to 2-aminophenol was carried out in 18O-labeled water, the product did not contain 18O, as determined by GC-MS. The results indicate that the reaction proceeded by intramolecular transfer of the hydroxy group from the nitrogen to the C-2 position of the ring. The mechanism is clearly different from the intermolecular transfer of the hydroxy group in the non-enzymatic Bamberger rearrangement of hydroxylaminobenzene to 4-aminophenol and in the enzymatic hydroxymutation of chorismate to isochorismate.
|
14. |
Sánchez-Romero JM,
Canosa I,
( 2000 ) A positive feedback mechanism controls expression of AlkS, the transcriptional regulator of the Pseudomonas oleovorans alkane degradation pathway. PMID : 10692156 : DOI : 10.1046/j.1365-2958.2000.01751.x Abstract >>
The AlkS regulator, encoded by the alkS gene of the Pseudomonas oleovorans OCT plasmid, activates the expression of a set of enzymes that allow assimilation of alkanes. We show that the AlkS protein regulates, both negatively and positively, the expression of its own gene. In the absence of alkanes, alkS is expressed from promoter PalkS1, which is recognized by sigmaS-RNA polymerase, and whose activity is very low in the exponential phase of growth and considerably higher in stationary phase. AlkS was found to downregulate this promoter, limiting expression of alkS in stationary phase when alkanes were absent. In the presence of alkanes, AlkS repressed PalkS1 more strongly and simultaneously activated a second promoter for alkS, named PalkS2, located 38 bp downstream from PalkS1. Activation of PalkS2 allowed efficient transcription of alkS when alkanes were present. Transcription from PalkS2 was modulated by catabolite repression when cells were provided with a preferred carbon source. We propose that the expression of alkS is regulated by a positive feedback mechanism, which leads to a rapid increase in alkS transcription when alkanes are present. This mechanism should allow a rapid induction of the pathway, as well as a fast switch-off when alkanes are depleted. An improved model for the regulation of the pathway is proposed.
|
15. |
He Z,
Davis JK,
( 1999 ) Genetic and biochemical comparison of 2-aminophenol 1,6-dioxygenase of Pseudomonas pseudoalcaligenes JS45 to meta-cleavage dioxygenases: divergent evolution of 2-aminophenol meta-cleavage pathway. PMID : 10550475 : Abstract >>
Nitrobenzene is degraded to pyruvate and acetaldehyde by Pseudomonas pseudoalcaligenes JS45 via a reductive pathway, and by Comamonas sp. JS765 via an oxidative pathway. Although the initial reactions in the degradation of nitrobenzene by the two bacteria are totally different, the lower pathways are similar and converge at the level of 4-oxalocrotonate. In order to further investigate the biochemical properties and reveal the evolutionary relationships between the two lower pathways, the genes encoding the 2-aminophenol 1,6-dioxygenase were cloned and sequenced. 2-Aminophenol 1,6-dioxygenase from P. pseudoalcaligenes JS45 and catechol 2,3-dioxygenase from Comamonas sp. JS765 were able to act on both catechol and 2-aminophenol, but catechol was a suicide substrate of 2-aminophenol 1,6-dioxygenase. The activity of 2-aminophenol 1,6-dioxygenase was restored after removal of catechol and incubation with ascorbate and FeCl(2). Both the alpha-subunit (AmnA) and the beta-subunit (AmnB) of the dioxygenase from P. pseudoalcaligenes JS45 show a high degree of identity to the corresponding subunits of the ring-fission dioxygenase from Pseudomonas sp. AP-3: 67% for the alpha-subunit, and 84% for the beta-subunit. Sequence similarity studies suggest that the beta-subunits of both 2-aminophenol 1,6-dioxygenases are distantly related to homoprotocatechuate 2,3-dioxygenase from Escherichia coli strains W and C and then to catechol 2, 3-dioxygenase from Alcaligenes eutrophus. Four active-site-relevant histidines are conserved in AmnB, but not in AmnA. The lack of conserved histidines indicates the absence of an Fe(2+) binding site in AmnA, which explains the previous observations of only approximately one Fe(2+) per two subunits in the 2-aminophenol 1, 6-dioxygenases from P. pseudoalcaligenes JS45. The 2-aminophenol 1, 6-dioxygenase genes are located upstream of the 2-aminomuconic semialdehyde dehydrogenase gene, and a putative member of the YjgF protein family is upstream of the dioxygenase genes. Transcriptional analysis indicates that the YjgF-like protein, 2-aminophenol 1, 6-dioxygenase, and 2-aminomuconic semialdehyde dehydrogenase are coordinately transcribed. A putative ORF similar to part of the RNA helicase genes is downstream of the dehydrogenase gene. Both the novel organization of the genes and the phylogeny of the dioxygenases and dehydrogenase indicate that the 2-aminophenol pathway in P. pseudoalcaligenes JS45 represents an example of a distant divergent evolution of meta-cleavage pathways.
|
16. |
Wubbolts MG,
Witholt B,
Meyer A,
Huber CM,
( 1999 ) An alkane-responsive expression system for the production of fine chemicals PMID : 10347009 : PMC : PMC91344 Abstract >>
Membrane-located monooxygenase systems, such as the Pseudomonas putida mt-2-derived xylene oxygenase, are attractive for challenging transformations of apolar compounds, including enantiospecific epoxidations, but are difficult to synthesize at levels that are useful for application to biotechnological processes. In order to construct efficient biocatalysis strains, we utilized the alkane-responsive regulatory system of the OCT plasmid-located alk genes of Pseudomonas oleovorans GPo1, a very attractive system for recombinant biotransformation processes. Determination of the nucleotide sequence of alkS, whose activated gene product positively regulates the transcription of the structural genes alkBFGHJKL, on a 3.7-kb SalI-HpaI OCT plasmid fragment was completed, and the N-terminal amino acid sequence of an AlkS-LacZ fusion protein was found to be consistent with the predicted DNA sequence. The alkS gene and the alkBp promoter were assembled into a convenient alkane-responsive genetic expression cassette which allowed expression of the xylene oxygenase genes in a recombinant Escherichia coli strain at a specific activity of 91 U per g (dry weight) of cells when styrene was the substrate. This biocatalyst was used to produce (S)-styrene oxide in two-liquid-phase cultures. Volumetric productivities of more than 2 g of styrene oxide per h per liter of aqueous phase were obtained; these values represented a fivefold improvement compared with previous results.
|
17. |
Witzig R,
Aly HA,
Strömpl C,
Wray V,
Junca H,
Pieper DH,
( 2007 ) Molecular detection and diversity of novel diterpenoid dioxygenase DitA1 genes from proteobacterial strains and soil samples. PMID : 17472635 : DOI : 10.1111/j.1462-2920.2007.01242.x Abstract >>
Resin acids are tricyclic diterpenoids naturally synthesized by trees that are released from wood during pulping processes. Using a newly designed primer set, genes similar to that encoding the DitA1 catalytic alpha-subunit of the diterpenoid dioxygenase, a key enzyme in abietane resin acid degradation by Pseudomonas abietaniphila BKME-9, could be amplified from different Pseudomonas strains, whereas ditA1 gene sequence types representing distinct branches in the evolutionary tree were amplified from Burkholderia and Cupriavidus isolates. All isolates harbouring a ditA1-homologue were capable of growth on dehydroabietic acid as the sole source of carbon and energy and reverse transcription polymerase chain reaction analysis in three strains confirmed that ditA1 was expressed constitutively or in response to DhA, demonstrating its involvement in DhA-degradation. Evolutionary analyses indicate that gyrB (as a phylogenetic marker) and ditA1 genes have coevolved under purifying selection from their ancestral variants present in the most recent common ancestor of the genera Pseudomonas, Cupriavidus and Burkholderia. A polymerase chain reaction-single-strand conformation poylmorphism fingerprinting method was established to monitor the diversity of ditA1 genes in environmental samples. The molecular fingerprints indicated the presence ofa broad, previously unrecognized diversity of diterpenoid dioxygenase genes in soils, and suggest that other bacterial phyla may also harbour the genetic potential for DhA-degradation.
|
18. |
Chu XY,
Wu NF,
Deng MJ,
Tian J,
Yao B,
Fan YL,
( 2006 ) Expression of organophosphorus hydrolase OPHC2 in Pichia pastoris: purification and characterization. PMID : 16769224 : DOI : 10.1016/j.pep.2006.03.013 Abstract >>
Organophosphorus hydrolase is able to hydrolyze phosphoester bonds and reduce the toxicity of organophosphorus compounds. In this work, recombinant organophosphorus hydrolase OPHC2 was successfully produced by Pichia pastoris at a high expression level (approximately 5.5 g/L) using 3 L high-cell-density fermentation. The expression level is higher than those produced in other expression systems. The results of the SDS-PAGE and the Western blot analyses showed a major 36 kDa polypeptide band, which was the same size as that from the original bacteria, Pseudomonas pseudoalcaligenes C2-1. The expressed enzyme was recovered from the culture supernatant and purified by a single-step purification procedure with a recovery rate of 72.78%. The main physiochemical features of the recombinant OPHC2, including its optimum temperature and pH for the reaction, its temperature and pH stability, and its sensitivity to some metal ions and chemical reagents, were also characterized. With methyl parathion as a substrate, the optimum temperature and pH for enzyme activity are 65 degrees C and pH 9.0, respectively. It also shows good thermal and pH stability.
|
19. |
Fujihara H,
Yoshida H,
Matsunaga T,
Goto M,
Furukawa K,
( 2006 ) Cross-regulation of biphenyl- and salicylate-catabolic genes by two regulatory systems in Pseudomonas pseudoalcaligenes KF707. PMID : 16788178 : DOI : 10.1128/JB.00329-06 PMC : PMC1482985 Abstract >>
Pseudomonas pseudoalcaligenes KF707 grows on biphenyl and salicylate as sole sources of carbon. The biphenyl-catabolic (bph) genes are organized as bphR1A1A2(orf3)A3A4BCX0X1X2X3D, encoding the enzymes for conversion of biphenyl to acetyl coenzyme A. In this study, the salicylate-catabolic (sal) gene cluster encoding the enzymes for conversion of salicylate to acetyl coenzyme A were identified 6.6-kb downstream of the bph gene cluster along with a second regulatory gene, bphR2. Both the bph and sal genes were cross-regulated positively and/or negatively by the two regulatory proteins, BphR1 and BphR2, in the presence or absence of the effectors. The BphR2 binding sequence exhibits homology with the NahR binding sequences in various naphthalene-degrading bacteria. Based on previous studies and the present study we propose a new regulatory model for biphenyl and salicylate catabolism in strain KF707.
|
20. |
Solaiman DK,
Ashby RD,
( 2005 ) Genetic characterization of the poly(hydroxyalkanoate) synthases of various Pseudomonas oleovorans strains. PMID : 15968501 : DOI : 10.1007/s00284-005-4508-7 Abstract >>
We identified the poly(hydroxyalkanoate) synthase (PHAS) genes of three strains of Pseudomonas oleovorans by using polymerase chain reaction (PCR)-based detection methods. P. oleovorans NRRL B-14682 contains Class I PHA synthase gene (phaC), NRRL B-14683 harbors Class II phaC1 and phaC2 genes, and NRRL B-778 contain both the Class I and II PHA synthase genes. Inverse-PCR and chromosomal walking techniques were employed to obtain the complete sequences of the Class I phaCs of NRRL B-778 (phbC778; 1698 bps) and B-14682 (phbC14682; 1899 bps). BLAST search indicated that these genes are new and had not been previously cloned. The gene product of phbC778 (i.e., PhbC778; 566 amino acid residues) is homologous to the Class I PHA synthases of Pseudomonas sp. HJ-2 and Pseudomonas sp. strain 61-3, and that of phbC14682 (PhbC14682; 632 amino acids) is homologous to PHAS of Delftia acidovorans. The PhbC14682 contains an extra sequence of 33 amino acids in its conserved alpha/beta-hydrolase domain, making it only the second Class I PHA synthase found to contain this cellular proteolytic sequence. Consistent with their Pseudomonas origin, the codon-usage profiles of PhbC778 and PhbC14682 are similar to those of Pseudomonas Class II PHASs. These new Pseudomonas Class I phbC genes provide valuable addition to the gene pool for the construction of novel PHASs through gene shuffling.
|
21. |
Ait Tayeb L,
Ageron E,
Grimont F,
Grimont PA,
( N/A ) Molecular phylogeny of the genus Pseudomonas based on rpoB sequences and application for the identification of isolates. PMID : 15950132 : DOI : 10.1016/j.resmic.2005.02.009 Abstract >>
Phylogenetic relationships within the genus Pseudomonas were examined by comparing partial (about 1000 nucleotides) rpoB gene sequences. A total of 186 strains belonging to 75 species of Pseudomonas sensu stricto and related species were studied. The phylogenetic resolution of the rpoB tree was approximately three times higher than that of the rrs tree. Ribogroups published earlier correlated well with rpoB sequence clusters. The rpoB sequence database generated by this study was used for identification. A total of 89 isolates (79.5%) were identified to a named species, while 16 isolates (14.3%) corresponded to unnamed species, and 7 isolates (6.2%) had uncertain affiliation. rpoB sequencing is now being used for routine identification of Pseudomonas isolates in our laboratory.
|
22. |
Quinteira S,
Ferreira H,
Peixe L,
( 2005 ) First isolation of blaVIM-2 in an environmental isolate of Pseudomonas pseudoalcaligenes. PMID : 15855549 : DOI : 10.1128/AAC.49.5.2140-2141.2005 PMC : PMC1087648 Abstract >>
N/A
|
23. |
Favre-Bonté S,
Ranjard L,
Colinon C,
Prigent-Combaret C,
Nazaret S,
Cournoyer B,
( 2005 ) Freshwater selenium-methylating bacterial thiopurine methyltransferases: diversity and molecular phylogeny. PMID : 15658983 : DOI : 10.1111/j.1462-2920.2004.00670.x Abstract >>
The diversity of bacterial thiopurine methyltransferases (bTPMT) among five natural Se-methylating freshwaters was investigated by polymerase chain reaction (PCR) screenings and sequencings. DNA sequence analyses confirmed the cloned products' identity and revealed a broad diversity of freshwater TPMTs. Neighbour-joining (NJ) phylogenetic analyses combining these sequences, all GenBank entries closely related to these sequences and deduced TPMTs obtained in this work from selected gamma-proteobacteria showed TPMTs to form a distinct radiation, closely related to UbiG methyltransferases. Inside the TPMT phylogenetic cluster, eukaryote sequences diverged early from the bacterial ones, and all the bacterial database entries belonged to a subgroup of gamma-proteobacteria, with an apparent lateral transfer of a particular allele to beta-proteobacteria of Bordetella. The NJ phylogenetic tree revealed 22 bTPMT lineages, 10 of which harboured freshwater sequences. All lineages showed deep and long branches indicative of major genetic drifts outside regions encoding highly conserved domains. Selected residues among these highly variable domains could reflect adaptations for particular ecological niches. PCR lineage-specific primers differentiated Se-methylating freshwaters according to their 'tpm lineage' signatures. Most freshwater tpm alleles were found to be distinct from those available in the databases, but a group of tpm was found encoding TPMTs identical to an Aeromonas veronii TPMT characterized in this work.
|
24. |
Taira K,
Hirose J,
Hayashida S,
Furukawa K,
( 1992 ) Analysis of bph operon from the polychlorinated biphenyl-degrading strain of Pseudomonas pseudoalcaligenes KF707. PMID : 1537863 : Abstract >>
The entire nucleotide sequences (6.8 kilobase pairs) of the bphABC genes and their products involved in the initial dioxygenation and ring-meta-cleavage of biphenyls and polychlorinated biphenyls were determined. The first bphA gene starts about a 100 base pairs downstream from the transcriptional initiation site. The bphA region, which encodes a cluster of enzymes including biphenyl dioxygenase catalyzing the initial catabolic step, consists of five open reading frames (ORFs). Five proteins corresponding to these ORFs in the molecular masses were detected by in vitro protein synthesis, of which four ORFs are very similar to the recently reported todC1C2BA genes coding for the corresponding enzymes catalyzing the initial dioxygenation reactions of toluene (Zylstra, G.J., and Gibson, D. T. (1989) J. Biol. Chem. 264, 14940-14946). The third open reading frame (ORF3) of the bphA region, missing its counterpart in the toluene dioxygenase gene cluster, was site-specifically deleted, and the resulting enzymatically active mutant reveals that this ORF3 is not mandatory for the catabolism of biphenyls. Thus the biphenyl degradation pathway and the responsible enzymes/genes are very similar to those of toluene degradation despite their discrete substrate specificity.
|
25. |
Ruiz JA,
López NI,
Méndez BS,
( 2004 ) rpoS gene expression in carbon-starved cultures of the Polyhydroxyalkanoate-accumulating species Pseudomonas oleovorans. PMID : 15170232 : DOI : 10.1007/s00284-003-4183-5 Abstract >>
The expression of the rpoS gene during PHA depolymerization was monitored in Pseudomonas oleovorans GPo1 and its mutant defective in PHA degradation by analyzing the tolerance to oxidative and thermal stresses and the RpoS intracellular content. An increase in the tolerance to H2O2 and heat shock was observed coincidentally with PHA degradation. Western blotting experiments performed in carbon-starved cultures showed that the RpoS levels were higher in the wild type than in the mutant strain. Complementation of the phaZ mutation restores the wild-type RpoS levels. These results suggest a probable association between PHA depolymerization and the stress tolerance phenotype controlled by RpoS.
|
26. |
Hill JE,
Penny SL,
Crowell KG,
Goh SH,
Hemmingsen SM,
( 2004 ) cpnDB: a chaperonin sequence database. PMID : 15289485 : DOI : 10.1101/gr.2649204 PMC : PMC509277 Abstract >>
Type I chaperonins are molecular chaperones present in virtually all bacteria, some archaea and the plastids and mitochondria of eukaryotes. Sequences of cpn60 genes, encoding 60-kDa chaperonin protein subunits (CPN60, also known as GroEL or HSP60), are useful for phylogenetic studies and as targets for detection and identification of organisms. Conveniently, a 549-567-bp segment of the cpn60 coding region can be amplified with universal PCR primers. Here, we introduce cpnDB, a curated collection of cpn60 sequence data collected from public databases or generated by a network of collaborators exploiting the cpn60 target in clinical, phylogenetic, and microbial ecology studies. The growing database currently contains approximately 2000 records covering over 240 genera of bacteria, eukaryotes, and archaea. The database also contains over 60 sequences for the archaeal Type II chaperonin (thermosome, a homolog of eukaryotic cytoplasmic chaperonin) from 19 archaeal genera. As the largest curated collection of sequences available for a protein-encoding gene, cpnDB provides a resource for researchers interested in exploiting the power of cpn60 as a diagnostic or as a target for phylogenetic or microbial ecology studies, as well as those interested in broader subjects such as lateral gene transfer and codon usage. We built cpnDB from open source tools and it is available at http://cpndb.cbr.nrc.ca.
|
27. |
Ohnishi K,
Okuta A,
Ju J,
Hamada T,
Misono H,
Harayama S,
( 2004 ) Molecular breeding of 2,3-dihydroxybiphenyl 1,2-dioxygenase for enhanced resistance to 3-chlorocatechol. PMID : 15113829 : DOI : 10.1093/jb/mvh037 Abstract >>
3-Chlorobiphenyl is known to be mineralized by biphenyl-utilizing bacteria to 3-chlorobenzoate, which is further metabolized to 3-chlorocatechol. An extradiol dioxygenase, 2,3-dihydroxybiphenyl 1,2-dioxygenase (DHB12O; EC 1.13.11.39), which is encoded by the bphC gene, catalyzes the third step of the upper pathway of 3-chlorobiphenyl degradation. In this study, two full-length bphCs and nine partial fragments of bphCs fused to the 3' end of bphC in Pseudomonas pseudoalcaligenes KF707 were cloned from different biphenyl-utilizing soil bacteria and expressed in Escherichia coli. The enzyme activities of the expressed DHB12Os were inhibited to varying degrees by 3-chlorocatechol, and the E. coli cells overexpressing DHB12O could not grow or grew very slowly in the presence of 3-chlorocatechol. These sensitivities of enzyme activity and cell growth to 3-chlorocatechol were well correlated, and this phenomenon was employed in screening chimeric BphCs formed by family shuffling of bphC genes isolated from Comamonas testosteroni KF704 and C. testosteroni KF712. The resultant DHB12Os were more resistant by a factor of two to 3-chlorocatechol than one of the best parents, KF707 DHB12O.
|
28. |
Perry A,
Tambyrajah W,
Grossmann JG,
Lian LY,
Scrutton NS,
( 2004 ) Solution structure of the two-iron rubredoxin of Pseudomonas oleovorans determined by NMR spectroscopy and solution X-ray scattering and interactions with rubredoxin reductase. PMID : 15023067 : DOI : 10.1021/bi035817u Abstract >>
Here we provide insights into the molecular structure of the two-iron 19-kDa rubredoxin (AlkG) of Pseudomonas oleovorans using solution-state nuclear magnetic resonance (NMR) and small-angle X-ray scattering studies. Sequence alignment and biochemical studies have suggested that AlkG comprises two rubredoxin folds connected by a linker region of approximately 70 amino acid residues. The C-terminal domain (C-Rb) of this unusual rubredoxin, together with approximately 35 amino acid residues of the predicted linker region, was expressed in Escherichia coli, purified in the one-iron form and the structure of the cadmium-substituted form determined at high-resolution by NMR spectroscopy. The structure shows that the C-Rb domain is similar in fold to the conventional one-iron rubredoxins from other organisms, whereas the linker region does not have any discernible structure. This tandem "flexible-folded" structure of the polypeptide chain derived for the C-Rb protein was confirmed using solution X-ray scattering methods. X-ray scattering studies of AlkG indicated that the 70-amino acid residue linker forms a structured, yet mobile, polypeptide segment connecting the globular N- and C-terminal domains. The X-ray scattering studies also showed that the N-terminal domain (N-Rb) has a molecular conformation similar to that of C-Rb. The restored molecular shape indicates that the folded N-Rb and C-Rb domains of AlkG are noticeably separated, suggesting some domain movement on complex formation with rubredoxin reductase to allow interdomain electron transfer between the metal centers in AlkG. This study demonstrates the advantage of combining X-ray scattering and NMR methods in structural studies of dynamic, multidomain proteins that are not suited to crystallographic analysis. The study forms a structural foundation for functional studies of the interaction and electron-transfer reactions of AlkG with rubredoxin reductase, also reported herein.
|
29. |
Steinbüchel A,
Hustede E,
Liebergesell M,
Pieper U,
Timm A,
Valentin H,
( 1992 ) Molecular basis for biosynthesis and accumulation of polyhydroxyalkanoic acids in bacteria. PMID : 1476773 : DOI : 10.1111/j.1574-6968.1992.tb05841.x Abstract >>
The current knowledge on the structure and on the organization of polyhydroxyalkanoic acid (PHA)-biosynthetic genes from a wide range of different bacteria, which rely on different pathways for biosynthesis of this storage polyesters, is provided. Molecular data will be shown for genes of Alcaligenes eutrophus, purple non-sulfur bacteria, such as Rhodospirillum rubrum, purple sulfur bacteria, such as Chromatium vinosum, pseudomonads belonging to rRNA homology group I, such as Pseudomonas aeruginosa, Methylobacterium extorquens, and for the Gram-positive bacterium Rhodococcus ruber. Three different types of PHA synthases can be distinguished with respect to their substrate specificity and structure. Strategies for the cloning of PHA synthase structural genes will be outlined which are based on the knowledge of conserved regions of PHA synthase structural genes and of the PHA-biosynthetic routes in bacteria as well as on the heterologous expression of these genes and on the availability of mutants impaired in the accumulation of PHA. In addition, a terminology for the designation of PHAs and of proteins and genes relevant for the metabolism of PHA is suggested.
|
30. |
Bodilis J,
Nsigue Meilo S,
Cornelis P,
De Vos P,
Barray S,
( 2011 ) A long-branch attraction artifact reveals an adaptive radiation in pseudomonas. PMID : 21504889 : DOI : 10.1093/molbev/msr099 Abstract >>
A significant proportion of protein-encoding gene phylogenies in bacteria is inconsistent with the species phylogeny. It was usually argued that such inconsistencies resulted from lateral transfers. Here, by further studying the phylogeny of the oprF gene encoding the major surface protein in the bacterial Pseudomonas genus, we found that the incongruent tree topology observed results from a long-branch attraction (LBA) artifact and not from lateral transfers. LBA in the oprF phylogeny could be explained by the faster evolution in a lineage adapted to the rhizosphere, highlighting an unexpected adaptive radiation. We argue that analysis of such artifacts in other inconsistent bacterial phylogenies could be a valuable tool in molecular ecology to highlight cryptic adaptive radiations in microorganisms.
|
31. |
Pathma J,
Ayyadurai N,
Sakthivel N,
( 2010 ) Assessment of genetic and functional relationship of antagonistic fluorescent pseudomonads of rice rhizosphere by repetitive sequence, protein coding sequence and functional gene analyses. PMID : 21221925 : DOI : 10.1007/s12275-010-0064-3 Abstract >>
Antagonistic fluorescent pseudomonads isolated from rice rhizospheric soil were characterized using biochemical, taxonomical and molecular tools. Production of cyclopropane fatty acid (CFA) was correlated with their antagonistic potential. Strains were grouped into 18 different genotypes on the basis of amplified ribosomal DNA restriction analysis (ARDRA) and repetitive (rep)-PCR based genotypic fingerprinting analyses. High phylogenetic resolution among antagonistic fluorescent pseudomonad strains was obtained based on the DNA gyrase B subunit (gyrB) and RNA polymerase sigma factor 70 (rpoD) gene sequence analyses. Combined gyrB and rpoD sequence analysis resulted in the accurate estimation of molecular phylogeny and provided a significant correlation between the genetic distances among strains. Present study demonstrated the genetic and functional relationship of fluorescent pseudomonads. The knowledge on genetic and functional potential of fluorescent pseudomonads associated with rice rhizosphere is useful to understand their ecological role and for their utilization in sustainable agriculture.
|
32. |
Wang W,
Wang L,
Shao Z,
( 2010 ) Diversity and abundance of oil-degrading bacteria and alkane hydroxylase (alkB) genes in the subtropical seawater of Xiamen Island. PMID : 20683589 : DOI : 10.1007/s00248-010-9724-4 Abstract >>
In this report, the diversity of oil-degrading bacteria and alkB gene was surveyed in the seawater around Xiamen Island. Forty-four isolates unique in 16S rRNA sequence were obtained after enrichment with crude oil. Most of the obtained isolates exhibited growth with diesel oil and crude oil. alkB genes were positively detected in 16 isolates by degenerate polymerase chain reaction (PCR). And for the first time, alkB genes were found in bacteria of Gallaecimonas, Castellaniella, Paracoccus, and Leucobacter. Additional 29 alkB sequences were retrieved from genomic DNA of the oil-degrading communities. Phylogenetic analysis showed that the obtained alkB genes formed five groups, most of which exhibited 60-80% similarity at the amino acid level with sequences retrieved from the GenBank database. Furthermore, the abundance of alkB genes in seawater was examined by real-time PCR. The results showed that alkB genes of each group in situ ranged from about 3 �� 10(3) to 3 �� 10(5) copies L(-1), with the homologs of Alcanivorax and Pseudomonas being the most predominant. Bacteria of Alcanivorax, Acinetobacter, and Pseudomonas are important oil degraders in this area; while those frequently reported in other area, like Oleiphilus spp., Oleispira spp., and Thalassolituus spp. were not found in our report. These results indicate that bacteria and genes involved in oil degradation are quite diverse, and may have restriction in geographic distribution in some species.
|
33. |
Huisman GW,
Wonink E,
Meima R,
Kazemier B,
Terpstra P,
Witholt B,
( 1991 ) Metabolism of poly(3-hydroxyalkanoates) (PHAs) by Pseudomonas oleovorans. Identification and sequences of genes and function of the encoded proteins in the synthesis and degradation of PHA. PMID : 1989978 : Abstract >>
Pseudomonas oleovorans accumulates poly(3-hydroxyalkanoates) (PHAs) after growth on medium chain length hydrocarbons. Large amounts of this polyester are synthesized when cells are grown under nitrogen-limiting conditions. When nitrogen is resupplied in the medium, the accumulated PHA is degraded. In this paper, we describe mutants which are defective in the synthesis or in the degradation of PHA. These mutants were used to select DNA fragments which encode PHA polymerases and a PHA depolymerase. A 25-kilobase (kb) DNA fragment was isolated from P. oleovorans that complements a Pseudomonas putida mutant unable to accumulate PHA. Subcloning resulted in the assignment of a 6.4-kb EcoRI fragment as the pha locus, containing genetic information for PHA synthesis. Mutants in the PHA degradation pathway were also complemented by this fragment, indicating that genes encoding PHA biosynthetic and degradative enzymes are clustered. Analysis of the DNA sequence of the 6.4-kb fragment revealed the presence of two open reading frames encoding PHA polymerases based on homology to the poly(3-hydroxybutyrate) polymerase from Alcaligenes eutrophus. A third open reading frame complemented the PHA degradation mutation and is likely to encode a PHA depolymerase. The presence of two PHA polymerases is due to a 2098-base pair DNA duplication. The PHA polymerases are 53% identical and show 35-40% identity to the poly(3-hydroxybutyrate) polymerase. No clear difference in specificity was found for the PHA polymerases. However, with the pha locus cloned on a multicopy vector, a polymer was accumulated that contains a significantly higher amount of substrate-derived monomers. An increase in the rate of polyester synthesis versus oxidation of the monomers in the beta-oxidation explains these findings.
|
34. |
Luque-Almagro VM,
Huertas MJ,
Sáez LP,
Luque-Romero MM,
Moreno-Vivián C,
Castillo F,
Roldán MD,
Blasco R,
( 2008 ) Characterization of the Pseudomonas pseudoalcaligenes CECT5344 Cyanase, an enzyme that is not essential for cyanide assimilation. PMID : 18708510 : DOI : 10.1128/AEM.00916-08 PMC : PMC2570302 Abstract >>
Cyanase catalyzes the decomposition of cyanate into CO(2) and ammonium, with carbamate as an unstable intermediate. The cyanase of Pseudomonas pseudoalcaligenes CECT5344 was negatively regulated by ammonium and positively regulated by cyanate, cyanide, and some cyanometallic complexes. Cyanase activity was not detected in cell extracts from cells grown with ammonium, even in the presence of cyanate. Nevertheless, a low level of cyanase activity was detected in nitrogen-starved cells. The cyn gene cluster of P. pseudoalcaligenes CECT5344 was cloned and analyzed. The cynA, cynB, and cynD genes encode an ABC-type transporter, the cynS gene codes for the cyanase, and the cynF gene encodes a novel sigma(54)-dependent transcriptional regulator which is not present in other bacterial cyn gene clusters. The CynS protein was expressed in Escherichia coli and purified by following a simple and rapid protocol. The P. pseudoalcaligenes cyanase showed an optimal pH of 8.5 degrees C and a temperature of 65 degrees C. An insertion mutation was generated in the cynS gene. The resulting mutant was unable to use cyanate as the sole nitrogen source but showed the same resistance to cyanate as the wild-type strain. These results, in conjunction with the induction pattern of the enzymatic activity, suggest that the enzyme has an assimilatory function. Although the induction of cyanase activity in cyanide-degrading cells suggests that some cyanate may be generated from cyanide, the cynS mutant was not affected in its ability to degrade cyanide, which unambiguously indicates that cyanate is not a central metabolite in cyanide assimilation.
|
35. |
Quesada A,
Guijo MI,
Merchán F,
Blázquez B,
Igeño MI,
Blasco R,
( 2007 ) Essential role of cytochrome bd-related oxidase in cyanide resistance of Pseudomonas pseudoalcaligenes CECT5344. PMID : 17574992 : DOI : 10.1128/AEM.00503-07 PMC : PMC1950984 Abstract >>
Pseudomonas pseudoalcaligenes CECT5344 grows in minimal medium containing cyanide as the sole nitrogen source. Under these conditions, an O2-dependent respiration highly resistant to cyanide was detected in cell extracts. The structural genes for the cyanide-resistant terminal oxidase, cioA and cioB, are clustered and encode the integral membrane proteins that correspond to subunits I and II of classical cytochrome bd, although the presence of heme d in the membrane could not be detected by difference spectra. The cio operon from P. pseudoalcaligenes presents a singular organization, starting upstream of cioAB by the coding sequence of a putative ferredoxin-dependent sulfite or nitrite reductase and spanning downstream two additional open reading frames that encode uncharacterized gene products. PCR amplifications of RNA (reverse transcription-PCR) indicated the cyanide-dependent up-regulation and cotranscription along the operon. The targeted disruption of cioA eliminates both the expression of the cyanide-stimulated respiratory activity and the growth with cyanide as the nitrogen source, which suggests a critical role of this cytochrome bd-related oxidase in the metabolism of cyanide by P. pseudoalcaligenes CECT5344.
|
36. |
Kok M,
Oldenhuis R,
van der Linden MP,
Meulenberg CH,
Kingma J,
Witholt B,
( 1989 ) The Pseudomonas oleovorans alkBAC operon encodes two structurally related rubredoxins and an aldehyde dehydrogenase. PMID : 2647719 : Abstract >>
The Pseudomonas oleovorans alkBAC operon encodes seven proteins, of which at least three are involved in alkane hydroxylase (alkBA) and alkanol dehydrogenase (alkC) activities. We have determined the nucleotide sequence of the 2.5-kilobase pair alkA region and analyzed the role of its translation products in alkane oxidation. The alkA region contains three coding sequences, encoding two related rubredoxins (alkF and alkG) of 14- and 18-kDa molecular mass and a 52-kDa aldehyde dehydrogenase (alkH). Deletion analysis indicated that neither the 14-kDa alkF gene product (rubredoxin 1) nor the amino-terminal part of the 18-kDa alkG gene product (rubredoxin 2) is required for alkane hydroxylase activity in vivo. The product of the alkH cistron restores growth of a P. oleovorans aldehyde dehydrogenase mutant on aliphatic alcohols and aldehydes. Its amino acid sequence shows considerable homology to previously characterized aldehyde dehydrogenases from mammalian and fungal origin. The nucleotide composition of the alk genes (47% G + C) differs considerably from the G + C content of the P. oleovorans genome suggesting that the alk regulon may originate from an unrelated organism.
|
37. |
Kok M,
Oldenhuis R,
van der Linden MP,
Raatjes P,
Kingma J,
van Lelyveld PH,
Witholt B,
( 1989 ) The Pseudomonas oleovorans alkane hydroxylase gene. Sequence and expression. PMID : 2647718 : Abstract >>
We have identified and sequenced the Pseudomonas OCT plasmid-encoded alkane hydroxylase gene (alkB) and its promoter. The transcription initiation site of the alkBAC mRNA was determined by nuclease S1 mapping. A putative interaction site with RNA-polymerase was identified based on homology of the alk promoter with other Pseudomonas promoters. The alkB gene encodes a 401-amino acid polypeptide which, despite an unusual codon composition, can be expressed at high levels in Escherichia coli and Pseudomonas. The amino-terminal sequence of the purified cytoplasmic membrane alkane hydroxylase was determined and was found to be in agreement with the nucleotide sequence. The translation product of the alkB gene contains nine hydrophobic sequences of which eight are sufficiently long to be membrane-spanning segments. The amino-terminal sequence resembles that of several bacterial integral membrane proteins and is not cleaved off following translation.
|
38. |
Faccone D,
Pasteran F,
Albornoz E,
Gonzalez L,
Veliz O,
Prieto M,
Bucciarelli R,
Callejo R,
Corso A,
( 2014 ) Human infections due to Pseudomonas chlororaphis and Pseudomonas oleovorans harboring new bla(VIM-2)-borne integrons. PMID : 25460821 : DOI : 10.1016/j.meegid.2014.10.012 Abstract >>
N/A
|
39. |
Zhang D,
Berry JP,
Zhu D,
Wang Y,
Chen Y,
Jiang B,
Huang S,
Langford H,
Li G,
Davison PA,
Xu J,
Aries E,
Huang WE,
( 2015 ) Magnetic nanoparticle-mediated isolation of functional bacteria in a complex microbial community. PMID : 25191996 : DOI : 10.1038/ismej.2014.161 PMC : PMC4331582 Abstract >>
Although uncultured microorganisms have important roles in ecosystems, their ecophysiology in situ remains elusive owing to the difficulty of obtaining live cells from their natural habitats. In this study, we employed a novel magnetic nanoparticle-mediated isolation (MMI) method to recover metabolically active cells of a group of previously uncultured phenol degraders, Burkholderiales spp., from coking plant wastewater biosludge; five other culturable phenol degraders-Rhodococcus sp., Chryseobacterium sp. and three different Pseudomonas spp.-were also isolated from the same biosludge using traditional methods. The kinetics of phenol degradation by MMI-recovered cells (MRCs) was similar to that of the original sludge. Stable isotope probing (SIP) and pyrosequencing of the 16S rRNA from the 'heavy' DNA ((13)C-DNA) fractions indicated that Burkholderiales spp. were the key phenol degraders in situ in the biosludge, consistent with the results of MRCs. Single-cell Raman micro-spectroscopy was applied to probe individual bacteria in the MRCs obtained from the SIP experiment and showed that 79% of them were fully (13)C-labelled. Biolog assays on the MRCs revealed the impact of various carbon and nitrogen substrates on the efficiency of phenol degradation in the wastewater treatment plant biosludge. Specifically, hydroxylamine, a metabolite of ammonia oxidisation, but not nitrite, nitrate or ammonia, inhibited phenol degradation in the biosludge. Our results provided a novel insight into the occasional abrupt failure events that occur in the wastewater treatment plant. This study demonstrated that MMI is a powerful tool to recover live and functional cells in situ from a complex microbial community to enable further characterisation of their physiology.
|
40. |
Cornelis P,
Bouia A,
Belarbi A,
Guyonvarch A,
Kammerer B,
Hannaert V,
Hubert JC,
( 1989 ) Cloning and analysis of the gene for the major outer membrane lipoprotein from Pseudomonas aeruginosa. PMID : 2473376 : DOI : 10.1111/j.1365-2958.1989.tb00187.x Abstract >>
The gene for the Pseudomonas aeruginosa outer membrane lipoprotein I was isolated from a genomic library in the phage lambda EMBL3 vector and subsequently subcloned in the low copy-number, wide host-range plasmid vector, pKT240. The cloned gene was highly expressed, resulting in the production of a low molecular-weight protein (8 kD) that was found to be associated with the outer membrane. Sequence analysis showed an open reading frame of 83 amino acids with a putative N-terminal hydrophobic signal peptide of 19 residues immediately followed by the lipoprotein consensus sequence, GLY-CYS-SER-SER (residues 19-22). The predicted amino acid composition of the mature polypeptide and that of the purified lipoprotein I of P. aeruginosa (Mizuno and Kageyama, 1979) were identical. In contrast with other Gram-negative outer membrane lipoproteins, conformation predictions suggested that the mature protein was a single alpha helix.
|
41. |
Furukawa K,
Hayase N,
Taira K,
Tomizuka N,
( 1989 ) Molecular relationship of chromosomal genes encoding biphenyl/polychlorinated biphenyl catabolism: some soil bacteria possess a highly conserved bph operon. PMID : 2507526 : DOI : 10.1128/jb.171.10.5467-5472.1989 PMC : PMC210385 Abstract >>
All the genes we examined that encoded biphenyl/polychlorinated biphenyl (PCB) degradation were chromosomal, unlike many other degradation-encoding genes, which are plasmid borne. The molecular relationship of genes coding for biphenyl/PCB catabolism in various biphenyl/PCB-degrading Pseudomonas, Achromobacter, Alcaligenes, Moraxella, and Arthrobacter strains was investigated. Among 15 strains tested, 5 Pseudomonas strains and one Alcaligenes strain possessed the bphABC gene cluster on the XhoI 7.2-kilobase fragment corresponding to that of Pseudomonas pseudoalcaligenes KF707. More importantly, the restriction profiles of these XhoI 7.2-kilobase fragments containing bphABC genes were very similar, if not identical, despite the dissimilarity of the flanking chromosomal regions. Three other strains also possessed bphABC genes homologous with those of KF707, and five other strains showed weak or no significant genetic homology with bphABC of KF707. The immunological cross-reactivity of 2,3-dihydroxybiphenyl dioxygenases from various strains corresponded well to the DNA homology. On the other hand, the bphC gene of another PCB-degrading strain, Pseudomonas paucimobilis Q1, lacked genetic as well as immunological homology with any of the other 15 biphenyl/PCB degraders tested. The existence of the nearly identical chromosomal genes among various strains may suggest that a segment containing the bphABC genes has a mechanism for transferring the gene from one strain to another.
|
42. |
Luo XJ,
Kong XD,
Zhao J,
Chen Q,
Zhou J,
Xu JH,
( 2014 ) Switching a newly discovered lactonase into an efficient and thermostable phosphotriesterase by simple double mutations His250Ile/Ile263Trp. PMID : 24771278 : DOI : 10.1002/bit.25272 Abstract >>
OPHC2 is a thermostable organophosphate (OP) hydrolase in the �]-lactamase superfamily. OPs are highly toxic synthetic chemicals with no natural analogs. How did OPHC2 acquire phosphotriesterase (PTE) activity remained unclear. In this study, an OPHC2 analogue, PoOPH was discovered from Pseudomonas oleovorans exhibiting high lactonase and esterase activities and latent PTE activity. Sequence analysis revealed conserved His250 and Ile263 and site-directed mutagenesis at these crucial residues enhanced PTE activity. The best variant PoOPHM2 carrying H250I/I263W mutations displayed 6,962- and 106-fold improvements in catalytic efficiency for methyl-parathion and ethyl-paraoxon degradation, whereas the original lactonase and esterase activities decreased dramatically. A 1.4 �� 10(7) -fold of specificity inversion was achieved by only two residue substitutions. Significantly, thermostability of the variants was not compromised. Crystal structure of PoOPHM2 was determined at 2.25 ? resolution and docking studies suggested that the two residues in the binding pocket determine substrate recognition. Lastly, new organophosphorus hydrolases (OPHs) were discovered using simple double mutations. Among them, PpOPHM2 from Pseudomonas putida emerged as a new promising OPH with very high activity (41.0 U mg(-1)) toward methyl-parathion. Our results offer a first scrutiny to PTE activity evolution of OPHs in �]-lactamase superfamily and provide efficient and robust enzymes for OP detoxification.
|
43. |
Gotthard G,
Hiblot J,
Gonzalez D,
Elias M,
Chabriere E,
( 2013 ) Structural and enzymatic characterization of the phosphotriesterase OPHC2 from Pseudomonas pseudoalcaligenes. PMID : 24223749 : DOI : 10.1371/journal.pone.0077995 PMC : PMC3817169 Abstract >>
Organophosphates (OPs) are neurotoxic compounds for which current methods of elimination are unsatisfactory; thus bio-remediation is considered as a promising alternative. Here we provide the structural and enzymatic characterization of the recently identified enzyme isolated from Pseudomonas pseudoalcaligenes dubbed OPHC2. OPHC2 belongs to the metallo-�]-lactamase superfamily and exhibits an unusual thermal resistance and some OP degrading abilities. The X-ray structure of OPHC2 has been solved at 2.1 ? resolution. The enzyme is roughly globular exhibiting a �\�]/�]�\ topology typical of the metallo-�]-lactamase superfamily. Several structural determinants, such as an extended dimerization surface and an intramolecular disulfide bridge, common features in thermostable enzymes, are consistent with its high Tm (97.8�XC). Additionally, we provide the enzymatic characterization of OPHC2 against a wide range of OPs, esters and lactones. OPHC2 possesses a broad substrate activity spectrum, since it hydrolyzes various phosphotriesters, esters, and a lactone. Because of its organophosphorus hydrolase activity, and given its intrinsic thermostability, OPHC2 is an interesting candidate for the development of an OPs bio-decontaminant. Its X-ray structure shed light on its active site, and provides key information for the understanding of the substrate binding mode and catalysis.
|
44. |
Inglis GD,
Yanke LJ,
Selinger LB,
( 2011 ) Cutinolytic esterase activity of bacteria isolated from mixed-plant compost and characterization of a cutinase gene from Pseudomonas pseudoalcaligenes. PMID : 22029433 : DOI : 10.1139/w11-083 Abstract >>
The objective of the current study was to examine cutinolytic esterase (i.e., cutinase) activity by pseudomonads and bacteria isolated from mixed-plant compost. Approximately 400 isolates representing 52 taxa recovered from mixed-plant compost using cuticle baits, along with 117 pseudomonad isolates obtained from a culture collection (i.e., non-compost habitats), were evaluated. The ability of isolates to degrade the synthetic cutin polycaprolactone (PCL) was initially measured. Isolates from 23 taxa recovered from the compost degraded PCL. As well, isolates from 13 taxa of pseudomonads cleared PCL. Secondary screening measured esterase activity induced by the presence of apple cuticle using the chromogenic substrate p-nitrophenyl butyrate. Eighteen isolates representing four taxa (Alcaligenes faecalis , Bacillus licheniformis , Bacillus pumilus , and Pseudomonas pseudoalcaligenes) recovered from compost exhibited substantial esterase activity when grown with cuticle. In contrast, none of the pseudomonad isolates from the culture collection produced appreciable esterase activity. Although degradation of PCL was not correlated with esterase activity, isolates that were unable to degrade PCL failed to produce measureable esterase activities. Zymogram analysis indicated that the esterases produced by bacteria from compost ranged in size from 29 to 47 kDa. A gene from P. pseudoalcaligenes (cutA) was found to code for a cutin-induced esterase consisting of 302 amino acids and a theoretical protein size of 32 kDa. The enzyme was unique and was most closely related to other bacterial lipases (?48% similarity).
|
45. |
Becerra G,
Blasco R,
Quesada A,
Merchán F,
Igeño MI,
( 2011 ) Role of Fur on cyanide tolerance of Pseudomonas pseudoalcaligenes CECT5344. PMID : 22103539 : DOI : 10.1042/BST20110706 Abstract >>
Pseudomonas pseudoalcaligenes CECT5344 can be used in cyanide bioremediation processes because it grows at pH 9.5 using 2.0 mM cyanide at the sole nitrogen source. Cyanide strongly binds to metals creating iron-deprivation conditions. The bacterium responds to the presence of cyanide by inducing several processes such as siderophore synthesis for iron capture, cyanide-insensitive respiration system and defence mechanisms against oxidative stress. Since high concentrations of cyanide cause iron deficiency and because iron is an essential nutrient, bacterial growth in the presence of cyanide requires an efficient iron uptake. Fur is a global transcription factor that regulates a diversity of biological processes such as iron homoeostasis, TCA (tricarboxylic acid) cycle metabolism and oxidative stress response. Fur's regulation of iron uptake and storage genes should play a significant role in the lives of these bacteria. In the present review, current knowledge of Fur is summarized.
|
46. |
( 1997 ) M?ssbauer studies of alkane omega-hydroxylase: evidence for a diiron cluster in an integral-membrane enzyme. PMID : 9096332 : DOI : 10.1073/pnas.94.7.2981 PMC : PMC20308 Abstract >>
The gene encoding the alkane omega-hydroxylase (AlkB; EC 1.14.15.3) from Pseudomonas oleovorans was expressed in Escherichia coli. The integral-membrane protein was purified as nearly homogeneous protein vesicles by differential ultracentrifugation and HPLC cation exchange chromatography without the detergent solubilization normally required for membrane proteins. Purified AlkB had specific activity of up to 5 units/mg for octane-dependent NADPH consumption. M?ssbauer studies of AlkB showed that it contains an exchange-coupled dinuclear iron cluster of the type found in soluble diiron proteins such as hemerythrin, ribonucleotide reductase, methane monooxygenase, stearoyl-acyl carrier protein (ACP) delta9 desaturase, rubrerythrin, and purple acid phosphatase. In the as-isolated enzyme, the cluster contains an antiferromagnetically coupled pair of high-spin Fe(III) sites, with an occupancy of up to 0.9 cluster per AlkB. The diferric cluster could be reduced by sodium dithionite, and the diferrous state was found to be stable in air. When both O2 and substrate (octane) were added, however, the diferrous cluster was quantitatively reoxidized, proving that the diiron cluster occupies the active site. Mossbauer data on reduced AlkB are consistent with a cluster coordination rich in nitrogen-containing ligands. New sequence analyses indicate that at least 11 nonheme integral-membrane enzymes, including AlkB, contain the 8-histidine motif required for catalytic activity in stearoyl-CoA desaturase. Based on our M?ssbauer studies of AlkB, we propose that the integral-membrane enzymes in this family contain diiron clusters. Because these enzymes catalyze a diverse range of oxygenation reactions, this proposal suggests a greatly expanded role for diiron clusters in O2-activation biochemistry.
|
47. |
( 1997 ) Functional analyses of a variety of chimeric dioxygenases constructed from two biphenyl dioxygenases that are similar structurally but different functionally. PMID : 9190809 : DOI : 10.1128/jb.179.12.3936-3943.1997 PMC : PMC179202 Abstract >>
The biphenyl dioxygenases (BP Dox) of strains Pseudomonas pseudoalcaligenes KF707 and Pseudomonas cepacia LB400 exhibit a distinct difference in substrate ranges of polychlorinated biphenyls (PCB) despite nearly identical amino acid sequences. The range of congeners oxidized by LB400 BP Dox is much wider than that oxidized by KF707 BP Dox. The PCB degradation abilities of these BP Dox were highly dependent on the recognition of the chlorinated rings and the sites of oxygen activation. The KF707 BP Dox recognized primarily the 4'-chlorinated ring (97%) of 2,5,4'-trichlorobiphenyl and introduced molecular oxygen at the 2',3' position. The LB400 BP Dox recognized primarily the 2,5-dichlorinated ring (95%) of the same compound and introduced O2 at the 3,4 position. It was confirmed that the BphA1 subunit (iron-sulfur protein of terminal dioxygenase encoded by bphA1) plays a crucial role in determining the substrate selectivity. We constructed a variety of chimeric bphA1 genes by exchanging four common restriction fragments between the KF707 bphA1 and the LB400 bphA1. Observation of Escherichia coli cells expressing various chimeric BP Dox revealed that a relatively small number of amino acids in the carboxy-terminal half (among 20 different amino acids in total) are involved in the recognition of the chlorinated ring and the sites of dioxygenation and thereby are responsible for the degradation of PCB. The site-directed mutagenesis of Thr-376 (KF707) to Asn-376 (LB400) in KF707 BP Dox resulted in the expansion of the range of biodegradable PCB congeners.
|
48. |
( 1977 ) Characterization of the omega-hydroxylase of Pseudomonas oleovorans as a nonheme iron protein. PMID : 921275 : DOI : 10.1016/0003-9861(77)90388-5 Abstract >>
N/A
|
49. |
( 1996 ) Purification and partial characterization of an alkaline lipase from Pseudomonas pseudoalcaligenes F-111. PMID : 8975602 : PMC : PMC167873 Abstract >>
An extracellular alkaline lipase of alkalophilic Pseudomonas pseudoalcaligenes F-111 was purified to homogeneity. The apparent molecular weight determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis was 32,000, and the isoelectric point was 7.3. With p-nitrophenyl esters as its substrates, the enzyme shows preference for C12 acyl and C14 acyl groups. It was stable in the pH range of 6 to 10, which coincides with the optimum pH range.
|
50. |
( 1993 ) Degradation of nitrobenzene by a Pseudomonas pseudoalcaligenes. PMID : 8368838 : PMC : PMC182314 Abstract >>
A Pseudomonas pseudoalcaligenes able to use nitrobenzene as the sole source of carbon, nitrogen, and energy was isolated from soil and groundwater contaminated with nitrobenzene. The range of aromatic substrates able to support growth was limited to nitrobenzene, hydroxylaminobenzene, and 2-aminophenol. Washed suspensions of nitrobenzene-grown cells removed nitrobenzene from culture fluids with the concomitant release of ammonia. Nitrobenzene, nitrosobenzene, hydroxylaminobenzene, and 2-aminophenol stimulated oxygen uptake in resting cells and in extracts of nitrobenzene-grown cells. Under aerobic and anaerobic conditions, crude extracts converted nitrobenzene to 2-aminophenol with oxidation of 2 mol of NADPH. Ring cleavage, which required ferrous iron, produced a transient yellow product with a maximum A380. In the presence of NAD, the product disappeared and NADH was produced. In the absence of NAD, the ring fission product was spontaneously converted to picolinic acid, which was not further metabolized. These results indicate that the catabolic pathway involves the reduction of nitrobenzene to nitrosobenzene and then to hydroxylaminobenzene; each of these steps requires 1 mol of NADPH. An enzyme-mediated Bamberger-like rearrangement converts hydroxylaminobenzene to 2-aminophenol, which then undergoes meta ring cleavage to 2-aminomuconic semialdehyde. The mechanism for release of ammonia and subsequent metabolism are under investigation.
|
51. |
Dehmel U,
Engesser KH,
Timmis KN,
Dwyer DF,
( 1995 ) Cloning, nucleotide sequence, and expression of the gene encoding a novel dioxygenase involved in metabolism of carboxydiphenyl ethers in Pseudomonas pseudoalcaligenes POB310. PMID : 7710319 : Abstract >>
Pseudomonas pseudoalcaligenes strain POB310 degrades 3- and 4-carboxydiphenyl ether. The initial reaction involves an angular dioxygenation yielding an unstable hemiacetal that spontaneously decays to phenol and protocatechuate. We cloned a DNA fragment containing the gene encoding the initial dioxygenase from an unstable, self-transmissible plasmid. Sequence analysis revealed two open reading frames encoding proteins with putative molecular masses of 46.3 and 33.6 kDa. The deduced amino acid sequences showed homologies to oxygenase and reductase subunits of aromatic ring-activating dioxygenases, and contained regions identical to consensus sequences that bind chloroplast-like and Rieske-type [2Fe2S] clusters, suggesting that the initial dioxygenase is a class IA aromatic ring-activating dioxygenase system. Initial dioxygenase activity was induced in bacteria grown in M9 minimal medium containing 3- or 4-carboxydiphenyl ether or phenol as carbon source, indicating that the regulation is dependent on the phenol pathway. The maximal specific activity was measured at the beginning of the exponential growth phase.
|
52. |
Somerville CC,
Nishino SF,
Spain JC,
( 1995 ) Purification and characterization of nitrobenzene nitroreductase from Pseudomonas pseudoalcaligenes JS45. PMID : 7601851 : DOI : 10.1128/jb.177.13.3837-3842.1995 PMC : PMC177104 Abstract >>
Pseudomonas pseudoalcaligenes JS45 grows on nitrobenzene as a sole source of carbon, nitrogen, and energy. The catabolic pathway involves reduction to hydroxylaminobenzene followed by rearrangement to o-amino-phenol and ring fission (S. F. Nishino and J. C. Spain, Appl. Environ. Microbiol. 59:2520, 1993). A nitrobenzene-inducible, oxygen-insensitive nitroreductase was purified from extracts of JS45 by ammonium sulfate precipitation followed by anion-exchange and gel filtration chromatography. A single 33-kDa polypeptide was detected by denaturing gel electrophoresis. The size of the native protein was estimated to be 30 kDa by gel filtration. The enzyme is a flavoprotein with a tightly bound flavin mononucleotide cofactor in a ratio of 2 mol of flavin per mol of protein. The Km for nitrobenzene is 5 microM at an initial NADPH concentration of 0.5 mM. The Km for NADPH at an initial nitrobenzene concentration of 0.1 mM is 183 microM. Nitrosobenzene was not detected as an intermediate of nitrobenzene reduction, but nitrosobenzene is a substrate for the enzyme, and the specific activity for nitrosobenzene is higher than that for nitrobenzene. These results suggest that nitrosobenzene is formed but is immediately reduced to hydroxylaminobenzene. Hydroxylaminobenzene was the only product detected after incubation of the purified enzyme with nitrobenzene and NADPH. Hydroxylaminobenzene does not serve as a substrate for further reduction by this enzyme. The products and intermediates are consistent with two two-electron reductions of the parent compound. Furthermore, the low Km and the inducible control of enzyme synthesis suggest that nitrobenzene is the physiological substrate for this enzyme.
|
53. |
Peterson JA,
Coon MJ,
( 1968 ) Enzymatic omega-oxidation. 3. Purification and properties of rubredoxin, a component of the omega-hydroxylation system of Pseudomonas oleovorans. PMID : 4295540 : Abstract >>
N/A
|
54. |
Benson A,
Tomoda K,
Chang J,
Matsueda G,
Lode ET,
Coon MJ,
Yasunobu KT,
( 1971 ) Evolutionary and phylogenetic relationships of rubredoxin-containing microbes. PMID : 5543946 : DOI : 10.1016/0006-291x(71)90536-5 Abstract >>
N/A
|
55. |
Furukawa K,
Arimura N,
Miyazaki T,
( 1987 ) Nucleotide sequence of the 2,3-dihydroxybiphenyl dioxygenase gene of Pseudomonas pseudoalcaligenes. PMID : 3793719 : DOI : 10.1128/jb.169.1.427-429.1987 PMC : PMC211787 Abstract >>
2,3-Dihydroxybiphenyl dioxygenase, which catalyzes ring metacleavage of 2,3-dihydroxybiphenyl, is encoded by the bphC gene of Pseudomonas pseudoalcaligenes KF707 (K. Furukawa and T. Miyazaki, J. Bacteriol. 166:392-398, 1986). We determined the nucleotide sequence of a DNA fragment of 2,040 base pairs which included the bphC gene. The fragment included one open reading frame of 912 base pairs to accommodate the enzyme. The predicted processed amino acid sequence of the enzyme subunit consisted of 302 residues, and its 12 NH2-terminal residues were in perfect agreement with those determined for the enzyme. Approximately 10 base pairs upstream from the initiation codon for 2,3-dihydroxybiphenyl dioxygenase, there was a base sequence complementary to the 3' end of the 16S rRNA from Pseudomonas aeruginosa. There was no promoterlike sequence in the region upstream of the bphC gene, but another long open reading frame was present. A putative bphD gene encoding a metacleavage compound-hydrolyzing enzyme was suggested in the region downstream of the bphC gene.
|
56. |
( 1999 ) PhaF, a polyhydroxyalkanoate-granule-associated protein of Pseudomonas oleovorans GPo1 involved in the regulatory expression system for pha genes. PMID : 9922249 : PMC : PMC93452 Abstract >>
The phaC1 gene codes for the medium-chain-length polyhydroxyalkanoate (mcl PHA) synthase of Pseudomonas oleovorans GPo1, which produces mcl PHA when grown in an excess of carbon source and under nitrogen limitation. In this work, we have demonstrated, by constructing a recombinant P. oleovorans strain carrying a phaC1::lacZ reporter system, that the phaC1 gene is expressed efficiently in the presence of octanoic acid while its expression is repressed when glucose or citrate is used as the carbon source. Moreover, a P. oleovorans GPo1 mutant (strain GPG-Tc6) expressing higher levels of the reporter gene than the wild-type strain in the presence of glucose or citrate has been generated by mini-Tn5 insertional mutagenesis. Characterization of this mutant allowed us to conclude that phaF, a gene located downstream of the pha gene cluster, was knocked out in this strain. P. oleovorans GPG-Tc6 regained the ability to control phaC1 gene expression when complemented with the phaF wild-type gene. Sequencing data revealed the presence of three complete open reading frames (ORFs) in this region: ORF1 and phaI and phaF genes. The amino acid sequences of the phaI gene product and the N-terminal half of the PhaF protein showed a significant degree of similarity. Furthermore, the primary structure of the PhaF C terminus identifies this protein as a member of the histone H1-like group of proteins. Northern blot analysis showed two transcription units containing phaF, i.e., phaF and phaIF transcripts. Expression of the phaIF operon is more efficient in the presence of octanoic acid and is enhanced by the lack of the PhaF protein. In addition, it has also been demonstrated that both PhaF and PhaI proteins are bound to PHA granules produced by P. oleovorans. A model for the role of PhaF in regulating PHA synthesis is presented.
|
57. |
( 1990 ) Rubredoxin reductase of Pseudomonas oleovorans. Structural relationship to other flavoprotein oxidoreductases based on one NAD and two FAD fingerprints. PMID : 2319593 : DOI : 10.1016/0022-2836(90)90310-I Abstract >>
The oxidation of alkanes to alkanols by Pseudomonas oleovorans involves a three-component enzyme system: alkane hydroxylase, rubredoxin and rubredoxin reductase. Alkane hydroxylase and rubredoxin are encoded by the alkBFGHJKL operon, while previous studies indicated that rubredoxin reductase is most likely encoded on the second alk cluster: the alkST operon. In this study we show that alkT encodes the 41 x 10(3) Mr rubredoxin reductase, on the basis of a comparison of the expected amino acid composition of AlkT and the previously established amino acid composition of the purified rubredoxin reductase. The alkT sequence revealed significant similarities between AlkT and several NAD(P)H and FAD-containing reductases and dehydrogenases. All of these enzymes contain two ADP binding sites, which can be recognized by a common beta alpha beta-fold or fingerprint, derived from known structures of cofactor binding enzymes. By means of this amino acid fingerprint we were able to determine that one ADP binding site in rubredoxin reductase (AlkT) is located at the N terminus and is involved in FAD binding, while the second site is located in the middle of the sequence and is involved in the binding of NAD or NADP. In addition, we derived from the sequences of FAD binding reductases a second amino acid fingerprint for FAD binding, and we used this fingerprint to identify a third amino acid sequence in AlkT near the carboxy terminus for binding of the flavin moiety of FAD. On the basis of the known architecture and relative spatial orientations of the NAD and FAD binding sites in related dehydrogenases, a model for part of the tertiary structure of AlkT was developed.
|
58. |
( 2013 ) Evaluation of oprI and oprL genes as molecular markers for the genus Pseudomonas and their use in studying the biodiversity of a small Belgian River. PMID : 23246592 : DOI : 10.1016/j.resmic.2012.12.001 Abstract >>
A multiplex PCR based on oprI and oprL, coding for the outer membrane lipoprotein I and the peptidoglycan-associated lipoprotein OprL, respectively, was developed for the detection of Pseudomonas strains from a bacterial collection isolated from a small river. To study the diversity of these Pseudomonas isolates, an oprI-oprL gene sequence database of 94 Pseudomonas type strains was constructed. Phylogenetic analysis of the concatenated oprI and oprL gene sequences of the Pseudomonas type strains showed that they were largely congruent with the classification based on the MLSA approach based on 16S rRNA, gyrB, rpoB and rpoD gene sequences of Mulet et al. in 2010. Identification of the isolates demonstrated a high diversity of Pseudomonas isolates at the source of the river located in a forest of which most isolates belonged to the Pseudomonas fluorescens lineage. On the other hand, the Pseudomonas population isolated at an anthropized site at the mouth of the river, receiving waste water from both households and industry, was very different and contained many Pseudomonas aeruginosa isolates.
|
59. |
( 1998 ) Sequence diversity of the oprI gene, coding for major outer membrane lipoprotein I, among rRNA group I pseudomonads. PMID : 9851998 : PMC : PMC107757 Abstract >>
The sequence of oprI, the gene coding for the major outer membrane lipoprotein I, was determined by PCR sequencing for representatives of 17 species of rRNA group I pseudomonads, with a special emphasis on Pseudomonas aeruginosa and Pseudomonas fluorescens. Within the P. aeruginosa species, oprI sequences for 25 independent isolates were found to be identical, except for one silent substitution at position 96. The oprI sequences diverged more for the other rRNA group I pseudomonads (85 to 91% similarity with P. aeruginosa oprI). An accumulation of silent and also (but to a much lesser extent) nonsilent substitutions in the different sequences was found. A clustering according to the respective presence and/or positions of the HaeIII, PvuII, and SphI sites could also be obtained. A sequence cluster analysis showed a rather widespread distribution of P. fluorescens isolates. All other rRNA group I pseudomonads clustered in a manner that was in agreement with other studies, showing that the oprI gene can be useful as a complementary phylogenetic marker for classification of rRNA group I pseudomonads.
|
60. |
( 1998 ) Electron transfer from flavin to iron in the Pseudomonas oleovorans rubredoxin reductase-rubredoxin electron transfer complex. PMID : 9799514 : DOI : 10.1021/bi981853v Abstract >>
Rubredoxin reductase (RR) and rubredoxin form a soluble and physiological eT complex. The complex provides reducing equivalents for a membrane-bound omega-hydroxylase, required for the hydroxylation of alkanes and related compounds. The gene (alkT) encoding RR has been overexpressed and the enzyme purified in amounts suitable for studies of eT by stopped-flow spectroscopy. The eT reactions from NADH to the flavin of RR and from reduced RR to the 1Fe and 2Fe forms of rubredoxin have been characterized by transient kinetic and thermodynamic analysis. The reductive half-reaction proceeds in a one-step reaction involving oxidized enzyme and a two-electron-reduced enzyme-NAD+ charge-transfer complex. Flavin reduction is observed at 450 nm and charge-transfer formation at 750 nm; both steps are hyperbolically dependent on NADH concentration. The limiting flavin reduction rate (180 +/- 4 s-1) is comparable to the limiting rate for charge-transfer formation (189 +/- 7 s-1) and analysis at 450 and 750 nm yielded enzyme-NADH dissociation constants of 36 +/- 2 and 43 +/- 5 microM, respectively. Thermodynamic analysis of the reductive half-reaction yielded values for changes in entropy (DeltaS = -65.8 +/- 2.2 J mol-1 K-1), enthalpy (DeltaH = 37.8 +/- 0.6 kJ mol-1) and Gibbs free energy (DeltaG = 57.5 +/- 0.7 kJ mol-1 at 298 K) during hydride ion transfer to the flavin N5 atom. Spectral analysis of mixtures of 1Fe or 2Fe rubredoxin and RR suggest that conformational changes accompany eT complex assembly. Both the 1Fe (nonphysiological) and 2Fe (physiological) forms of rubredoxin were found to oxidize two electron-reduced rubredoxin reductase with approximately equal facility. Rates for the reduction of rubredoxin are hyperbolically dependent on rubredoxin concentration and the limiting rates are 72. 7 +/- 0.6 and 55.2 +/- 0.3 s-1 for the 1Fe and 2Fe forms, respectively. Analysis of the temperature dependence of eT to rubredoxin using eT theory revealed that the reaction is not adequately described as a nonadiabatic eT reaction (HAB >> 80 cm-1). eT to both the 1Fe and 2Fe forms of rubredoxin is therefore gated by an adiabatic process that precedes the eT reaction from flavin to iron. Possible origins of this adiabatic event are discussed.
|
61. |
( 1998 ) Purification, characterization, and sequence analysis of 2-aminomuconic 6-semialdehyde dehydrogenase from Pseudomonas pseudoalcaligenes JS45. PMID : 9721300 : PMC : PMC107472 Abstract >>
2-Aminonumconic 6-semialdehyde is an unstable intermediate in the biodegradation of nitrobenzene and 2-aminophenol by Pseudomonas pseudoalcaligenes JS45. Previous work has shown that enzymes in cell extracts convert 2-aminophenol to 2-aminomuconate in the presence of NAD+. In the present work, 2-aminomuconic semialdehyde dehydrogenase was purified and characterized. The purified enzyme migrates as a single band on sodium dodecyl sulfate-polyacrylamide gel electrophoresis with a molecular mass of 57 kDa. The molecular mass of the native enzyme was estimated to be 160 kDa by gel filtration chromatography. The optimal pH for the enzyme activity was 7.3. The enzyme is able to oxidize several aldehyde analogs, including 2-hydroxymuconic semialdehyde, hexaldehyde, and benzaldehyde. The gene encoding 2-aminomuconic semialdehyde dehydrogenase was identified by matching the deduced N-terminal amino acid sequence of the gene with the first 21 amino acids of the purified protein. Multiple sequence alignment of various semialdehyde dehydrogenase protein sequences indicates that 2-aminomuconic 6-semialdehyde dehydrogenase has a high degree of identity with 2-hydroxymuconic 6-semialdehyde dehydrogenases.
|
62. |
( 1998 ) A novel 2-aminomuconate deaminase in the nitrobenzene degradation pathway of Pseudomonas pseudoalcaligenes JS45. PMID : 9573204 : PMC : PMC107194 Abstract >>
2-Aminomuconate, an intermediate in the metabolism of tryptophan in mammals, is also an intermediate in the biodegradation of nitrobenzene by Pseudomonas pseudoalcaligenes JS45. Strain JS45 hydrolyzes 2-aminomuconate to 4-oxalocrotonic acid, with the release of ammonia, which serves as the nitrogen source for growth of the microorganism. As an initial step in studying the novel deamination mechanism, we report here the purification and some properties of 2-aminomuconate deaminase. The purified enzyme migrates as a single band with a molecular mass of 16.6 kDa in 15% polyacrylamide gel electrophoresis under denaturing conditions. The estimated molecular mass of the native enzyme was 100 kDa by gel filtration and 4 to 20% gradient nondenaturing polyacrylamide gel electrophoresis, suggesting that the enzyme consists of six identical subunits. The enzyme was stable at room temperature and exhibited optimal activity at pH 6.6. The Km for 2-aminomuconate was approximately 67 microM, and the Vmax was 125 micromol x min(-1) x mg(-1). The N-terminal amino acid sequence of the enzyme did not show any significant similarity to any sequence in the databases. The purified enzyme converted 2-aminomuconate directly to 4-oxalocrotonate, rather than 2-hydroxymuconate, which suggests that the deamination was carried out via an imine intermediate.
|