BCRC Strain Collection Catalog & Shopping Cart

  Home / BCRC Content / 12054 / 

Return

  Research Article

The information shown in this page was generated using the cross-referenced linkage within public domain database between their strains and BCRC related strains. Usually the information provided from public domain databases varies with different confidences and errors, BCRC provides the related information here at best effort, but BCRC doesn't take the responsibility about the correctness of the information provided here.

1. Kim  BJ, Kim  CJ, Chun  J, Koh  YH, Lee  SH, Hyun  JW, Cha  CY, Kook  YH,     ( 2004 )

Phylogenetic analysis of the genera Streptomyces and Kitasatospora based on partial RNA polymerase beta-subunit gene (rpoB) sequences.

International journal of systematic and evolutionary microbiology 54 (Pt 2)
PMID : 15023980  :   DOI  :   10.1099/ijs.0.02941-0    
Abstract >>
The RNA polymerase beta-subunit genes (rpoB) of 67 Streptomyces strains, representing 57 species, five Kitasatospora strains and Micromonospora echinospora KCTC 9549 were partially sequenced using a pair of rpoB PCR primers. Among the streptomycetes, 99.7-100 % similarity within the same species and 90.2-99.3 % similarity at the interspecific level were observed by analysis of the determined rpoB sequences. The topology of the phylogenetic tree based on rpoB sequences was similar to that of 16S rDNA. The five Kitasatospora strains formed a stable monophyletic clade and a sister group to the clade comprising all Streptomyces species. Although there were several discrepancies in the details, considerable agreement was found between the results of rpoB analysis and those of numerical phenetic classification. This study demonstrates that analysis of rpoB can be used as an alternative genetic method in parallel to conventional taxonomic methods, including numerical phenetic and 16S rDNA analyses, for the phylogenetic analyses of the genera Streptomyces and Kitasatospora.
KeywordMeSH Terms
2. Laskaris  P, Tolba  S, Calvo-Bado  L, Wellington  EM, Wellington  L,     ( 2010 )

Coevolution of antibiotic production and counter-resistance in soil bacteria.

Environmental microbiology 12 (3)
PMID : 20067498  :   DOI  :   10.1111/j.1462-2920.2009.02125.x    
Abstract >>
We present evidence for the coexistence and coevolution of antibiotic resistance and biosynthesis genes in soil bacteria. The distribution of the streptomycin (strA) and viomycin (vph) resistance genes was examined in Streptomyces isolates. strA and vph were found either within a biosynthetic gene cluster or independently. Streptomyces griseus strains possessing the streptomycin cluster formed part of a clonal complex. All S. griseus strains possessing solely strA belonged to two clades; both were closely related to the streptomycin producers. Other more distantly related S. griseus strains did not contain strA. S. griseus strains with only vph also formed two clades, but they were more distantly related to the producers and to one another. The expression of the strA gene was constitutive in a resistance-only strain whereas streptomycin producers showed peak strA expression in late log phase that correlates with the switch on of streptomycin biosynthesis. While there is evidence that antibiotics have diverse roles in nature, our data clearly support the coevolution of resistance in the presence of antibiotic biosynthetic capability within closely related soil dwelling bacteria. This reinforces the view that, for some antibiotics at least, the primary role is one of antibiosis during competition in soil for resources.
KeywordMeSH Terms
Soil Microbiology
3. Guo  Y, Zheng  W, Rong  X, Huang  Y,     ( 2008 )

A multilocus phylogeny of the Streptomyces griseus 16S rRNA gene clade: use of multilocus sequence analysis for streptomycete systematics.

International journal of systematic and evolutionary microbiology 58 (Pt 1)
PMID : 18175701  :   DOI  :   10.1099/ijs.0.65224-0    
Abstract >>
Streptomycetes are a complex group of actinomycetes that produce diverse bioactive metabolites of commercial significance. Systematics can provide a useful framework for identifying species that may produce novel metabolites. However, previously proposed approaches to the systematics of Streptomyces have suffered from either poor interlaboratory comparability or insufficient resolution. In particular, the Streptomyces griseus 16S rRNA gene clade is the most challenging and least defined group within the genus Streptomyces in terms of phylogeny. Here we report the results of a multilocus sequence analysis scheme developed to address the phylogeny of this clade. Sequence fragments of six housekeeping genes, atpD, gyrB, recA, rpoB, trpB and 16S rRNA, were obtained for 53 reference strains that represent 45 valid species and subspecies. Analysis of each individual locus confirmed the suitability of loci and the congruence of single-gene trees for concatenation. Concatenated trees of three, four, five and all six genes were constructed, and the stability of the topology and discriminatory power of each tree were analysed. It can be concluded from the results that phylogenetic analysis based on multilocus sequences is more accurate and robust for species delineation within Streptomyces. A multilocus phylogeny of six genes proved to be optimal for elucidating the interspecies relationships within the S. griseus 16S rRNA gene clade. Our multilocus sequence analysis scheme provides a valuable tool that can be applied to other Streptomyces clades for refining the systematic framework of this genus.
KeywordMeSH Terms
Bacterial Typing Techniques
Phylogeny
Sequence Analysis, DNA
4. Labeda  DP, Doroghazi  JR, Ju  KS, Metcalf  WW,     ( 2014 )

Taxonomic evaluation of Streptomyces albus and related species using multilocus sequence analysis and proposals to emend the description of Streptomyces albus and describe Streptomyces pathocidini sp. nov.

International journal of systematic and evolutionary microbiology 64 (Pt 3)
PMID : 24277863  :   DOI  :   10.1099/ijs.0.058107-0     PMC  :   PMC4851252    
Abstract >>
In phylogenetic analyses of the genus Streptomyces using 16S rRNA gene sequences, Streptomyces albus subsp. albus NRRL B-1811(T) forms a cluster with five other species having identical or nearly identical 16S rRNA gene sequences. Moreover, the morphological and physiological characteristics of these other species, including Streptomyces almquistii NRRL B-1685(T), Streptomyces flocculus NRRL B-2465(T), Streptomyces gibsonii NRRL B-1335(T) and Streptomyces rangoonensis NRRL B-12378(T) are quite similar. This cluster is of particular taxonomic interest because Streptomyces albus is the type species of the genus Streptomyces. The related strains were subjected to multilocus sequence analysis (MLSA) utilizing partial sequences of the housekeeping genes atpD, gyrB, recA, rpoB and trpB and confirmation of previously reported phenotypic characteristics. The five strains formed a coherent cluster supported by a 100 % bootstrap value in phylogenetic trees generated from sequence alignments prepared by concatenating the sequences of the housekeeping genes, and identical tree topology was observed using various different tree-making algorithms. Moreover, all but one strain, S. flocculus NRRL B-2465(T), exhibited identical sequences for all of the five housekeeping gene loci sequenced, but NRRL B-2465(T) still exhibited an MLSA evolutionary distance of 0.005 from the other strains, a value that is lower than the 0.007 MLSA evolutionary distance threshold proposed for species-level relatedness. These data support a proposal to reclassify S. almquistii, S. flocculus, S. gibsonii and S. rangoonensis as later heterotypic synonyms of S. albus with NRRL B-1811(T) as the type strain. The MLSA sequence database also demonstrated utility for quickly and conclusively confirming that numerous strains within the ARS Culture Collection had been previously misidentified as subspecies of S. albus and that Streptomyces albus subsp. pathocidicus should be redescribed as a novel species, Streptomyces pathocidini sp. nov., with the type strain NRRL B-24287(T).
KeywordMeSH Terms
Multilocus Sequence Typing
Phylogeny
5. Kim  KO, Shin  KS, Kim  MN, Shin  KS, Labeda  DP, Han  JH, Kim  SB,     ( 2012 )

Reassessment of the status of Streptomyces setonii and reclassification of Streptomyces fimicarius as a later synonym of Streptomyces setonii and Streptomyces albovinaceus as a later synonym of Streptomyces globisporus based on combined 16S rRNA/gyrB gene sequence analysis.

International journal of systematic and evolutionary microbiology 62 (Pt 12)
PMID : 22286909  :   DOI  :   10.1099/ijs.0.040287-0    
Abstract >>
The 16S rRNA and gyrB genes of 22 Streptomyces strains belonging to the Streptomyces griseus cluster were sequenced, and their taxonomic positions were re-evaluated. For correct analysis, all of the publicly available sequences of the species were collected and compared with those obtained in this study. Species for which no consensus sequence could be identified were excluded from the phylogenetic analysis. The levels of 16S rRNA gene sequence similarity within the cluster ranged from 98.6 to 100% with a mean value of 99.6 �� 0.3%, and those of the gyrB gene ranged from 93.6 to 99.9% with a mean value of 96.3 �� 1.5%. The observed average nucleotide substitution rate of the gyrB gene was ten times higher than that of the 16S rRNA gene, showing a far higher degree of variation. Strains sharing 99.3% or more gyrB sequence similarity (corresponding to an evolutionary distance of 0.0073) always formed monophyletic groups in both trees. Through the combined analysis of the two genes, clear cases of synonymy could be identified and, according to the priority rule, the assertion of the status of Streptomyces setonii as a distinct species and the reclassification of Streptomyces fimicarius as a later synonym of S. setonii and Streptomyces albovinaceus as a later synonym of Streptomyces globisporus are proposed. Emended descriptions of S. setonii and S. globisporus are provided.
KeywordMeSH Terms
Phylogeny

331, Shih-Pin Rd., Hsinchu 30062, Taiwan

Phone: +886-3-5223191

E-mail: bcrcweb@firdi.org.tw

web maintainance: +886-3-5223191 ext 593

Copyright © 2018.BCRC All rights reserved.The duplication or use of information and data such as texts or images or any linkage the website at the "bcrc.firdi.org.tw" is only permitted with the indication of the source or with prior approval by the BCRC(Bioresource Collection and Research Center).