BCRC Strain Collection Catalog & Shopping Cart

  Home / BCRC Content / 12638 / 

Return

  Research Article

The information shown in this page was generated using the cross-referenced linkage within public domain database between their strains and BCRC related strains. Usually the information provided from public domain databases varies with different confidences and errors, BCRC provides the related information here at best effort, but BCRC doesn't take the responsibility about the correctness of the information provided here.

1. Lin  W, Chan  M, Goh  LL, Sim  TS,     ( 2007 )

Molecular basis for thermal properties of Streptomyces thermovulgaris fumarase C hinge at hydrophilic amino acids R163, E170 and S347.

Applied microbiology and biotechnology 75 (2)
PMID : 17245573  :   DOI  :   10.1007/s00253-006-0822-7    
Abstract >>
Industrially, the use of high temperatures (40-60 degrees C) in the L: -malate production process could result in rapid inactivation of the mesophilic fumarases, warranting constant replenishment of the biocatalyst. Thus, a thermostable fumarase C that is active and stable at high temperatures would be ideal. Biochemical studies using recombinant fumarase C from thermophilic Streptomyces thermovulgaris (stFUMC) indicated that it was optimally active at 50 degrees C and highly stable even after 24 h of incubation at 40 degrees C. The same gene from mesophilic Streptomyces coelicolor (scfumC) was also cloned and expressed as soluble proteins for comparison in thermal properties of both enzymes. In contrast to stFUMC, scFUMC exhibited a lower temperature optima of 30 degrees C and was rapidly denatured at 50 degrees C. The specific activity of stFUMC was also higher than that of scFUMC by 20-fold. After primary sequence comparison, three hydrophilic amino acid residues, R163, E170 and S347, were forged into the thermolabile scFUMC either singly or in combination for the investigation of their contributions in the thermal properties of the mutant enzymes. Of the mutants studied, the A347S scFUMC mutant resulted in the highest increase in optimum temperature of 10 degrees C and a fourfold enhancement in specific activity. G163R/G170E and G163R/G170E/A347S scFUMC mutants are more thermostable than wild-type scFUMC. These findings support stFUMC as a highly efficient, thermostable fumarase C with industrial potential and suggest that R163, E170 and S347 are involved in the enhancement of thermal properties in fumarase C.
KeywordMeSH Terms
Fumarate Hydratase
Hot Temperature
2. Cheng  HL, Wang  PM, Chen  YC, Yang  SS, Chen  YC,     ( 2008 )

Cloning, characterization and phylogenetic relationships of stxI, a endoxylanase-encoding gene from Streptomyces thermonitrificans NTU-88.

Bioresource technology 99 (1)
PMID : 17215123  :   DOI  :   10.1016/j.biortech.2006.11.023    
Abstract >>
A thermostable xylanase gene (stxI) obtained from Streptomyces thermonitrificans NTU-88 on domain analysis revealed an N-terminal catalytic domain featuring homology to a known xylanase within the glycoside hydrolase family 11. Recombinant STXI retained more than 60% of its activity following its incubation for at 60 degrees C for 24h. These characteristics were close to thermophile and mesophile Streptomyces strains. The main hydrolysis products of xylan degraded by STXI included large xylooligosaccharide fragments. These results indicated that STXI was a typical endoxylanase. As regards the phylogenetic relationships of GH11, STXI and the other xylanase deriving from Streptomyces were included in a subgroup of the aerobic bacterial group. This result implied that the evolutionary relationships between the various xylanases deriving from Streptomyces strains were convergent.
KeywordMeSH Terms
Cloning, Molecular
Genes, Bacterial
Phylogeny
3. Busarakam  K, Bull  AT, Girard  G, Labeda  DP, van Wezel  GP, Goodfellow  M,     ( 2014 )

Streptomyces leeuwenhoekii sp. nov., the producer of chaxalactins and chaxamycins, forms a distinct branch in Streptomyces gene trees.

Antonie van Leeuwenhoek 105 (5)
PMID : 24604690  :   DOI  :   10.1007/s10482-014-0139-y    
Abstract >>
A polyphasic study was carried out to establish the taxonomic status of an Atacama Desert isolate, Streptomyces strain C34(T), which synthesises novel antibiotics, the chaxalactins and chaxamycins. The organism was shown to have chemotaxonomic, cultural and morphological properties consistent with its classification in the genus Streptomyces. Analysis of 16S rRNA gene sequences showed that strain C34(T) formed a distinct phyletic line in the Streptomyces gene tree that was very loosely associated with the type strains of several Streptomyces species. Multilocus sequence analysis based on five house-keeping gene alleles underpinned the separation of strain C34(T) from all of its nearest phylogenetic neighbours, apart from Streptomyces chiangmaiensis TA-1(T) and Streptomyces hyderabadensis OU-40(T) which are not currently in the MLSA database. Strain C34(T) was distinguished readily from the S. chiangmaiensis and S. hyderabadensis strains by using a combination of cultural and phenotypic data. Consequently, strain C34(T) is considered to represent a new species of the genus Streptomyces for which the name Streptomyces leeuwenhoekii sp. nov. is proposed. The type strain is C34(T) (= DSM 42122(T) = NRRL B-24963(T)). Analysis of the whole-genome sequence of S. leeuwenhoekii, with 6,780 predicted open reading frames and a total genome size of around 7.86 Mb, revealed a high potential for natural product biosynthesis.
KeywordMeSH Terms

331, Shih-Pin Rd., Hsinchu 30062, Taiwan

Phone: +886-3-5223191

E-mail: bcrcweb@firdi.org.tw

web maintainance: +886-3-5223191 ext 593

Copyright © 2018.BCRC All rights reserved.The duplication or use of information and data such as texts or images or any linkage the website at the "bcrc.firdi.org.tw" is only permitted with the indication of the source or with prior approval by the BCRC(Bioresource Collection and Research Center).