BCRC Strain Collection Catalog & Shopping Cart

  Home / BCRC Content / 13375 / 

Return

  Research Article

The information shown in this page was generated using the cross-referenced linkage within public domain database between their strains and BCRC related strains. Usually the information provided from public domain databases varies with different confidences and errors, BCRC provides the related information here at best effort, but BCRC doesn't take the responsibility about the correctness of the information provided here.

1. Hatano  K, Nishii  T, Kasai  H,     ( 2003 )

Taxonomic re-evaluation of whorl-forming Streptomyces (formerly Streptoverticillium) species by using phenotypes, DNA-DNA hybridization and sequences of gyrB, and proposal of Streptomyces luteireticuli (ex Katoh and Arai 1957) corrig., sp. nov., nom. rev.

International journal of systematic and evolutionary microbiology 53 (Pt 5)
PMID : 13130042  :   DOI  :   10.1099/ijs.0.02238-0    
Abstract >>
The taxonomic status of 64 strains of whorl-forming Streptomyces (formerly Streptoverticillium) species was re-evaluated and strains were reclassified on the basis of their phenotypes, DNA-DNA hybridization data and partial sequences of gyrB, the structural gene of the B subunit of DNA gyrase. These strains, which consisted of 46 species and eight subspecies with validly published names and 13 species whose names have not been validly published [including 10 strains examined by the International Streptomyces Project (ISP)], were divided into two groups, namely typical and atypical whorl-forming Streptomyces species, based on their phenotypes and gyrB gene sequences. The typical whorl-forming species (59 strains) were divided into six major clusters of three or more species, seven minor clusters of two species and five single-member clusters, based on the threshold value of 97 % gyrB sequence similarity. Major clusters were typified by Streptomyces abikoensis, Streptomyces cinnamoneus, Streptomyces distallicus, Streptomyces griseocarneus, Streptomyces hiroshimensis and Streptomyces netropsis. Phenotypically, members of each cluster resembled each other closely except for the S. distallicus cluster, which was divided phenotypically into the S. distallicus and Streptomyces stramineus subclusters, and the S. netropsis cluster, which was divided into the S. netropsis and Streptomyces eurocidicus subclusters. Strains in each minor cluster closely resembled each other phenotypically. DNA-DNA relatedness between the representative species and others in each major cluster and/or subcluster, and between strains in the minor clusters, was >70 %, indicating that the major clusters and/or subclusters and the minor clusters each comprise a single species. It was concluded that 59 strains of typical whorl-forming Streptomyces species consisted of the following 18 species, including subjective synonym(s): S. abikoensis, Streptomyces ardus, Streptomyces blastmyceticus, S. cinnamoneus, S. eurocidicus, S. griseocarneus, S. hiroshimensis, Streptomyces lilacinus, 'Streptomyces luteoreticuli', Streptomyces luteosporeus, Streptomyces mashuensis, Streptomyces mobaraensis, Streptomyces morookaense, S. netropsis, Streptomyces orinoci, S. stramineus, Streptomyces thioluteus and Streptomyces viridiflavus.
KeywordMeSH Terms
2. Kim  BJ, Kim  CJ, Chun  J, Koh  YH, Lee  SH, Hyun  JW, Cha  CY, Kook  YH,     ( 2004 )

Phylogenetic analysis of the genera Streptomyces and Kitasatospora based on partial RNA polymerase beta-subunit gene (rpoB) sequences.

International journal of systematic and evolutionary microbiology 54 (Pt 2)
PMID : 15023980  :   DOI  :   10.1099/ijs.0.02941-0    
Abstract >>
The RNA polymerase beta-subunit genes (rpoB) of 67 Streptomyces strains, representing 57 species, five Kitasatospora strains and Micromonospora echinospora KCTC 9549 were partially sequenced using a pair of rpoB PCR primers. Among the streptomycetes, 99.7-100 % similarity within the same species and 90.2-99.3 % similarity at the interspecific level were observed by analysis of the determined rpoB sequences. The topology of the phylogenetic tree based on rpoB sequences was similar to that of 16S rDNA. The five Kitasatospora strains formed a stable monophyletic clade and a sister group to the clade comprising all Streptomyces species. Although there were several discrepancies in the details, considerable agreement was found between the results of rpoB analysis and those of numerical phenetic classification. This study demonstrates that analysis of rpoB can be used as an alternative genetic method in parallel to conventional taxonomic methods, including numerical phenetic and 16S rDNA analyses, for the phylogenetic analyses of the genera Streptomyces and Kitasatospora.
KeywordMeSH Terms
3. Gao  P, Huang  Y,     ( 2009 )

Detection, distribution, and organohalogen compound discovery implications of the reduced flavin adenine dinucleotide-dependent halogenase gene in major filamentous actinomycete taxonomic groups.

Applied and environmental microbiology 75 (14)
PMID : 19447951  :   DOI  :   10.1128/AEM.02958-08     PMC  :   PMC2708417    
Abstract >>
Halogenases have been shown to play a significant role in biosynthesis and introducing the bioactivity of many halogenated secondary metabolites. In this study, 54 reduced flavin adenine dinucleotide (FADH(2))-dependent halogenase gene-positive strains were identified after the PCR screening of a large collection of 228 reference strains encompassing all major families and genera of filamentous actinomycetes. The wide distribution of this gene was observed to extend to some rare lineages with higher occurrences and large sequence diversity. Subsequent phylogenetic analyses revealed that strains containing highly homologous halogenases tended to produce halometabolites with similar structures, and halogenase genes are likely to propagate by horizontal gene transfer as well as vertical inheritance within actinomycetes. Higher percentages of halogenase gene-positive strains than those of halogenase gene-negative ones contained polyketide synthase genes and/or nonribosomal peptide synthetase genes or displayed antimicrobial activities in the tests applied, indicating their genetic and physiological potentials for producing secondary metabolites. The robustness of this halogenase gene screening strategy for the discovery of particular biosynthetic gene clusters in rare actinomycetes besides streptomycetes was further supported by genome-walking analysis. The described distribution and phylogenetic implications of the FADH(2)-dependent halogenase gene present a guide for strain selection in the search for novel organohalogen compounds from actinomycetes.
KeywordMeSH Terms
4. Han  JH, Cho  MH, Kim  SB,     ( 2012 )

Ribosomal and protein coding gene based multigene phylogeny on the family Streptomycetaceae.

Systematic and applied microbiology 35 (1)
PMID : 22154623  :   DOI  :   10.1016/j.syapm.2011.08.007    
Abstract >>
The phylogenetic relationship among the three genera of the family Streptomycetaceae was examined using the small and large subunit ribosomal RNA genes, and the gyrB, rpoB, trpB, atpD and recA genes. The total stretches of the analyzed ribosomal genes were 4.2kb, and those of five protein coding genes were 4.5 kb. The resultant phylogenetic trees confirmed that each genus formed an independent clade in the majority of cases. The G+C contents of rRNA genes were 56.9-58.9 mol%, and those of protein coding genes were 65.4-72.4 mol%, the latter being closer to those of the genomic DNAs. The average nucleotide sequence identity between the organisms were 94.1-96.4% for rRNA genes and 85.7-90.6% for protein coding genes, thus indicating that protein coding genes can give higher resolution than rRNA genes. In addition, the protein coding gene trees were more stable than the rRNA gene trees, supported by higher bootstrap values and other treeing algorithms. Moreover, the genome data of six Streptomyces species indicated that many protein coding genes exhibited higher correlations with genome relatedness. The combined gene sequences were also shown to give a better resolution with higher stability than any single genes, though not necessarily more correlated with genome relatedness. It is evident from this study that the rRNA gene based phylogeny can be misleading, and also that protein coding genes have a number of advantages over the rRNA genes as the phylogenetic markers including a high correlation with the genome relatedness.
KeywordMeSH Terms
Genes, rRNA
Phylogeny
5. Su  C, Yan  Y, Guo  X, Luo  J, Liu  C, Zhang  Z, Xiang  WS, Huang  SX,     ( 2019 )

Characterization of the N-methyltransferases involved in the biosynthesis of toxoflavin, fervenulin and reumycin from Streptomyces hiroshimensis ATCC53615.

Organic & biomolecular chemistry 17 (3)
PMID : 30565634  :   DOI  :   10.1039/c8ob02847h    
Abstract >>
Toxoflavin (1), fervenulin (2), and reumycin (3), known to be produced by plant pathogen Burkholderia glumae BGR1, are structurally related 7-azapteridine antibiotics. Previous biosynthetic studies revealed that N-methyltransferase ToxA from B. glumae BGR1 catalyzed the sequential methylation at N6 and N1 in pyrimido[5,4-e]-as-triazine-5,7(6H,8H)-dione (4) to generate 1. However, the N8 methylation of 4 in the biosynthesis of fervenulin remains unclear. To explore the N-methyltransferases required for the biosynthesis of 1 and 2, we identified and characterized the fervenulin and toxoflavin biosynthetic gene clusters in S. hiroshimensis ATCC53615. On the basis of the structures of intermediates accumulated from the four N-methyltransferase gene inactivation mutants and systematic enzymatic methylation reactions, the tailoring steps for the methylation order in the biosynthesis of 1 and 2 were proposed. The N-methylation order and routes for the biosynthesis of fervenulin and toxoflavin in S. hiroshimensis are more complex and represent an obvious departure from those in B. glumae BGR1.
KeywordMeSH Terms
6. Moon  K, Xu  F, Zhang  C, Seyedsayamdost  MR,     ( 2019 )

Bioactivity-HiTES Unveils Cryptic Antibiotics Encoded in Actinomycete Bacteria.

ACS chemical biology 14 (4)
PMID : 30830740  :   DOI  :   10.1021/acschembio.9b00049    
Abstract >>
Bacteria harbor an immense reservoir of potentially new and therapeutic small molecules in the form of "silent" biosynthetic gene clusters (BGCs). These BGCs can be identified bioinformatically but are sparingly expressed under normal laboratory growth conditions, or not at all, and therefore do not produce significant levels of the corresponding small molecule product. Several methods have been developed for activating silent BGCs. A major limitation for nearly all methods is that they require genetic procedures and/or do not report on the bioactivity of the cryptic metabolite. We herein report "Bioactivty-HiTES", an approach that links the bioactivity of cryptic metabolites to their induction while at the same time obviating the need for genetic manipulations. Using this method, we detected induction of cryptic antibiotics in three actinomycete strains that were tested. Follow-up studies in one case allowed us to structurally elucidate two cryptic metabolites, elicited by the �]-blocker atenolol in Streptomyces hiroshimensis, with selective growth-inhibitory activity against Gram-negative bacteria, notably Escherichia coli and Acinetobacter baumannii. Atenolol turned out to be a global elicitor of secondary metabolism, and characterization of additional cryptic metabolites led to the discovery of a novel naphthoquinone epoxide. Bioactivity-HiTES is a general, widely applicable procedure that will be useful in identifying cryptic bioactive metabolites in the future.
KeywordMeSH Terms

331, Shih-Pin Rd., Hsinchu 30062, Taiwan

Phone: +886-3-5223191

E-mail: bcrcweb@firdi.org.tw

web maintainance: +886-3-5223191 ext 593

Copyright © 2018.BCRC All rights reserved.The duplication or use of information and data such as texts or images or any linkage the website at the "bcrc.firdi.org.tw" is only permitted with the indication of the source or with prior approval by the BCRC(Bioresource Collection and Research Center).