BCRC Strain Collection Catalog & Shopping Cart

  Home / BCRC Content / 13440 / 

Return

  Research Article

The information shown in this page was generated using the cross-referenced linkage within public domain database between their strains and BCRC related strains. Usually the information provided from public domain databases varies with different confidences and errors, BCRC provides the related information here at best effort, but BCRC doesn't take the responsibility about the correctness of the information provided here.

1. Doroghazi  JR, Buckley  DH,     ( 2010 )

Widespread homologous recombination within and between Streptomyces species.

The ISME journal 4 (9)
PMID : 20393569  :   DOI  :   10.1038/ismej.2010.45    
Abstract >>
Horizontal gene transfer (HGT) is widespread in the microbial world, but its impact on the origin and persistence of microbial species remains poorly defined. HGT can result in either acquisition of new genetic material or homologous replacement of existing genes. The evolutionary significance of homologous recombination in a population can be quantified by examining the relative rates at which polymorphisms are introduced from recombination (rho) and mutation (theta(w)). We used multilocus sequence analysis (MLSA) to quantify both intraspecies and interspecies homologous recombination among streptomycetes, multicellular Gram-positive bacteria ubiquitous in soil, which are an important source of antibiotics and bioactive compounds. Intraspecies recombination was examined using strains of Streptomyces flavogriseus isolated from soils at five locations spanning 1000 km. The strains had >99.8% nucleotide identity across the loci examined. We found remarkable levels of gene exchange within S. flavogriseus (rho/theta(w)=27.9), and found that the population was in linkage equilibrium (standardized index of association=0.0018), providing evidence for a freely recombining sexual population structure. We also examined interspecies homologous recombination among different Streptomyces species in an MLSA data set and found that 40% of the species had housekeeping genes acquired through HGT. The recombination rate between these named species (rho/theta(w)=0.21) exceeds that observed within many species of bacteria. Despite widespread gene exchange in the genus, the intraspecies recombination rate exceeded the interspecies rate by two orders of magnitude suggesting that patterns of gene exchange and recombination may shape the evolution of streptomycetes.
KeywordMeSH Terms
Recombination, Genetic
2. Guo  Y, Zheng  W, Rong  X, Huang  Y,     ( 2008 )

A multilocus phylogeny of the Streptomyces griseus 16S rRNA gene clade: use of multilocus sequence analysis for streptomycete systematics.

International journal of systematic and evolutionary microbiology 58 (Pt 1)
PMID : 18175701  :   DOI  :   10.1099/ijs.0.65224-0    
Abstract >>
Streptomycetes are a complex group of actinomycetes that produce diverse bioactive metabolites of commercial significance. Systematics can provide a useful framework for identifying species that may produce novel metabolites. However, previously proposed approaches to the systematics of Streptomyces have suffered from either poor interlaboratory comparability or insufficient resolution. In particular, the Streptomyces griseus 16S rRNA gene clade is the most challenging and least defined group within the genus Streptomyces in terms of phylogeny. Here we report the results of a multilocus sequence analysis scheme developed to address the phylogeny of this clade. Sequence fragments of six housekeeping genes, atpD, gyrB, recA, rpoB, trpB and 16S rRNA, were obtained for 53 reference strains that represent 45 valid species and subspecies. Analysis of each individual locus confirmed the suitability of loci and the congruence of single-gene trees for concatenation. Concatenated trees of three, four, five and all six genes were constructed, and the stability of the topology and discriminatory power of each tree were analysed. It can be concluded from the results that phylogenetic analysis based on multilocus sequences is more accurate and robust for species delineation within Streptomyces. A multilocus phylogeny of six genes proved to be optimal for elucidating the interspecies relationships within the S. griseus 16S rRNA gene clade. Our multilocus sequence analysis scheme provides a valuable tool that can be applied to other Streptomyces clades for refining the systematic framework of this genus.
KeywordMeSH Terms
Bacterial Typing Techniques
Phylogeny
Sequence Analysis, DNA
3. Zhang  W, Wang  L, Kong  L, Wang  T, Chu  Y, Deng  Z, You  D,     ( 2012 )

Unveiling the post-PKS redox tailoring steps in biosynthesis of the type II polyketide antitumor antibiotic xantholipin.

Chemistry & biology 19 (3)
PMID : 22444597  :   DOI  :   10.1016/j.chembiol.2012.01.016    
Abstract >>
Xantholipin from Streptomyces flavogriseus is a curved hexacyclic aromatic polyketide antitumor antibiotic. The entire 52 kb xantholipin (xan) biosynthetic gene cluster was sequenced, and bioinformatic analysis revealed open reading frames encoding type II polyketide synthases, regulators, and polyketide tailoring enzymes. Individual in-frame mutagenesis of five tailoring enzymes lead to the production of nine xantholipin analogs, revealing that the xanthone scaffold formation was catalyzed by the FAD binding monooxygenase XanO4, the �_-lactam formation by the asparagine synthetase homolog XanA, the methylenedioxy bridge generation by the P450 monooxygenase XanO2 and the hydroxylation of the carbon backbone by the FAD binding monooxygenase XanO5. These findings may also apply to other polycyclic xanthone antibiotics, and they form the basis for genetic engineering of the xantholipin and similar biosynthetic gene clusters for the generation of compounds with improved antitumor activities.
KeywordMeSH Terms
4. Auffret  M, Pilote  A, Proulx  E, Proulx  D, Vandenberg  G, Villemur  R,     ( 2011 )

Establishment of a real-time PCR method for quantification of geosmin-producing Streptomyces spp. in recirculating aquaculture systems.

Water research 45 (20)
PMID : 22060964  :   DOI  :   10.1016/j.watres.2011.10.020    
Abstract >>
Geosmin and 2-methylisoborneol (MIB) have been associated with off-flavour problems in fish and seafood products, generating a strong negative impact for aquaculture industries. Although most of the producers of geosmin and MIB have been identified as Streptomyces species or cyanobacteria, Streptomyces spp. are thought to be responsible for the synthesis of these compounds in indoor recirculating aquaculture systems (RAS). The detection of genes involved in the synthesis of geosmin and MIB can be a relevant indicator of the beginning of off-flavour events in RAS. Here, we report a real-time polymerase chain reaction (qPCR) protocol targeting geoA sequences that encode a germacradienol synthase involved in geosmin synthesis. New geoA-related sequences were retrieved from eleven geosmin-producing Actinomycete strains, among them two Streptomyces strains isolated from two RAS. Combined with geoA-related sequences available in gene databases, we designed primers and standards suitable for qPCR assays targeting mainly Streptomyces geoA. Using our qPCR protocol, we succeeded in measuring the level of geoA copies in sand filter and biofilters in two RAS. This study is the first to apply qPCR assays to detect and quantify the geosmin synthesis gene (geoA) in RAS. Quantification of geoA in RAS could permit the monitoring of the level of geosmin producers prior to the occurrence of geosmin production. This information will be most valuable for fish producers to manage further development of off-flavour events.
KeywordMeSH Terms
Aquaculture
5. Zothanpuia  N/A, Passari  AK, Leo  VV, Chandra  P, Kumar  B, Nayak  C, Hashem  A, Abd Allah  EF, Alqarawi  AA, Singh  BP,     ( 2018 )

Bioprospection of actinobacteria derived from freshwater sediments for their potential to produce antimicrobial compounds.

Microbial cell factories 17 (1)
PMID : 29729667  :   DOI  :   10.1186/s12934-018-0912-0     PMC  :   PMC5935920    
Abstract >>
Actinobacteria from freshwater habitats have been explored less than from other habitats in the search for compounds of pharmaceutical value. This study highlighted the abundance of actinobacteria from freshwater sediments of two rivers and one lake, and the isolates were studied for their ability to produce antimicrobial bioactive compounds. 16S rRNA gene sequencing led to the identification of 84 actinobacterial isolates separated into a common genus (Streptomyces) and eight rare genera (Nocardiopsis, Saccharopolyspora, Rhodococcus, Prauserella, Amycolatopsis, Promicromonospora, Kocuria and Micrococcus). All strains that showed significant inhibition potentials were found against Gram-positive, Gram-negative and yeast pathogens. Further, three biosynthetic genes, polyketide synthases type II (PKS II), nonribosomal peptide synthetases (NRPS) and aminodeoxyisochorismate synthase (phzE), were detected in 38, 71 and 29% of the strains, respectively. Six isolates based on their antimicrobial potentials were selected for the detection and quantification of standard antibiotics using ultra performance liquid chromatography (UPLC-ESI-MS/MS) and volatile organic compounds (VOCs) using gas chromatography mass spectrometry (GC/MS). Four antibiotics (fluconazole, trimethoprim, ketoconazole and rifampicin) and 35 VOCs were quantified and determined from the methanolic crude extract of six selected Streptomyces strains. Infectious diseases still remain one of the leading causes of death globally and bacterial infections caused millions of deaths annually. Culturable actinobacteria associated with freshwater lake and river sediments has the prospects for the production of bioactive secondary metabolites.
KeywordMeSH Terms
Actinobacteria
GC–MS
NRPS
PKSII
UPLC–ESI–MS/MS
VOCs
phzE
Actinobacteria
GC–MS
NRPS
PKSII
UPLC–ESI–MS/MS
VOCs
phzE

331, Shih-Pin Rd., Hsinchu 30062, Taiwan

Phone: +886-3-5223191

E-mail: bcrcweb@firdi.org.tw

web maintainance: +886-3-5223191 ext 593

Copyright © 2018.BCRC All rights reserved.The duplication or use of information and data such as texts or images or any linkage the website at the "bcrc.firdi.org.tw" is only permitted with the indication of the source or with prior approval by the BCRC(Bioresource Collection and Research Center).