BCRC Strain Collection Catalog & Shopping Cart

  Home / BCRC Content / 13652 / 

Return

  Research Article

The information shown in this page was generated using the cross-referenced linkage within public domain database between their strains and BCRC related strains. Usually the information provided from public domain databases varies with different confidences and errors, BCRC provides the related information here at best effort, but BCRC doesn't take the responsibility about the correctness of the information provided here.

1. Fu  C, Keller  L, Bauer  A, Brönstrup  M, Froidbise  A, Hammann  P, Herrmann  J, Mondesert  G, Kurz  M, Schiell  M, Schummer  D, Toti  L, Wink  J, Müller  R,     ( 2015 )

Biosynthetic Studies of Telomycin Reveal New Lipopeptides with Enhanced Activity.

Journal of the American Chemical Society 137 (24)
PMID : 26043159  :   DOI  :   10.1021/jacs.5b01794    
Abstract >>
Telomycin (TEM) is a cyclic depsipeptide antibiotic active against Gram-positive bacteria. In this study, five new natural telomycin analogues produced by Streptomyces canus ATCC 12646 were identified. To understand the biosynthetic machinery of telomycin and to generate more analogues by pathway engineering, the TEM biosynthesis gene cluster has been characterized from S. canus ATCC 12646: it spans approximately 80.5 kb and consists of 34 genes encoding fatty acid ligase, nonribosomal peptide synthetases (NRPSs), regulators, transporters, and tailoring enzymes. The gene cluster was heterologously expressed in Streptomyces albus J1074 setting the stage for convenient biosynthetic engineering, mutasynthesis, and production optimization. Moreover, in-frame deletions of one hydroxylase and two P450 monooxygenase genes resulted in the production of novel telomycin derivatives, revealing these genes to be responsible for the specific modification by hydroxylation of three amino acids found in the TEM backbone. Surprisingly, natural lipopeptide telomycin precursors were identified when characterizing an unusual precursor deacylation mechanism during telomycin maturation. By in vivo gene inactivation and in vitro biochemical characterization of the recombinant enzyme Tem25, the maturation process was shown to involve the cleavage of previously unknown telomycin precursor-lipopeptides, to yield 6-methylheptanoic acid and telomycins. These lipopeptides were isolated from an inactivation mutant of tem25 encoding a (de)acylase, structurally elucidated, and then shown to be deacylated by recombinant Tem25. The TEM precursor and several semisynthetic lipopeptide TEM derivatives showed rapid bactericidal killing and were active against several multidrug-resistant (MDR) Gram-positive pathogens, opening the path to future chemical optimization of telomycin for pharmaceutical application.
KeywordMeSH Terms
Multigene Family
2. Han  JH, Cho  MH, Kim  SB,     ( 2012 )

Ribosomal and protein coding gene based multigene phylogeny on the family Streptomycetaceae.

Systematic and applied microbiology 35 (1)
PMID : 22154623  :   DOI  :   10.1016/j.syapm.2011.08.007    
Abstract >>
The phylogenetic relationship among the three genera of the family Streptomycetaceae was examined using the small and large subunit ribosomal RNA genes, and the gyrB, rpoB, trpB, atpD and recA genes. The total stretches of the analyzed ribosomal genes were 4.2kb, and those of five protein coding genes were 4.5 kb. The resultant phylogenetic trees confirmed that each genus formed an independent clade in the majority of cases. The G+C contents of rRNA genes were 56.9-58.9 mol%, and those of protein coding genes were 65.4-72.4 mol%, the latter being closer to those of the genomic DNAs. The average nucleotide sequence identity between the organisms were 94.1-96.4% for rRNA genes and 85.7-90.6% for protein coding genes, thus indicating that protein coding genes can give higher resolution than rRNA genes. In addition, the protein coding gene trees were more stable than the rRNA gene trees, supported by higher bootstrap values and other treeing algorithms. Moreover, the genome data of six Streptomyces species indicated that many protein coding genes exhibited higher correlations with genome relatedness. The combined gene sequences were also shown to give a better resolution with higher stability than any single genes, though not necessarily more correlated with genome relatedness. It is evident from this study that the rRNA gene based phylogeny can be misleading, and also that protein coding genes have a number of advantages over the rRNA genes as the phylogenetic markers including a high correlation with the genome relatedness.
KeywordMeSH Terms
Genes, rRNA
Phylogeny

331, Shih-Pin Rd., Hsinchu 30062, Taiwan

Phone: +886-3-5223191

E-mail: bcrcweb@firdi.org.tw

web maintainance: +886-3-5223191 ext 593

Copyright © 2018.BCRC All rights reserved.The duplication or use of information and data such as texts or images or any linkage the website at the "bcrc.firdi.org.tw" is only permitted with the indication of the source or with prior approval by the BCRC(Bioresource Collection and Research Center).