BCRC Strain Collection Catalog & Shopping Cart

  Home / BCRC Content / 13995 / 

Return

  Research Article

The information shown in this page was generated using the cross-referenced linkage within public domain database between their strains and BCRC related strains. Usually the information provided from public domain databases varies with different confidences and errors, BCRC provides the related information here at best effort, but BCRC doesn't take the responsibility about the correctness of the information provided here.

1. Dauga  C,     ( 2002 )

Evolution of the gyrB gene and the molecular phylogeny of Enterobacteriaceae: a model molecule for molecular systematic studies.

International journal of systematic and evolutionary microbiology 52 (Pt 2)
PMID : 11931166  :   DOI  :   10.1099/00207713-52-2-531    
Abstract >>
Phylogenetic trees showing the evolutionary relatedness of Enterobacteriaceae based upon gyrB and 16S rRNA genes were compared. Congruence among trees of these molecules indicates that the genomes of these species are not completely mosaic and that molecular systematic studies can be carried out. Phylogenetic trees based on gyrB sequences appeared to be more reliable at determining relationships among Serratia species than trees based on 16S rRNA gene sequences. gyrB sequences from Serratia species formed a monophyletic group validated by significant bootstrap values. Serratia fonticola had the most deeply branching gyrB sequence in the Serratia monophyletic group, which was consistent with its atypical phenotypic characteristics. Klebsiella and Enterobacter genera seemed to be polyphyletic, but the branching patterns of gyrB and 16S rRNA gene trees were not congruent. Enterobacter aerogenes was grouped with Klebsiella pneumoniae on the gyrB phylogenetic tree, which supports that this species could be transferred to the Klebsiella genus. Unfortunately, 16S rRNA and gyrB phylogenetic trees gave conflicting evolutionary relationships for Citrobacter freundii because of its unusual gyrB evolutionary process. gyrB lateral gene transfer was suspected for Hafnia alvei. Saturation of gyrB genes was observed by the pairwise comparison of Proteus spp., Providencia alcalifaciens and Morganella morganii sequences. Depending on their level of variability, 16S rRNA gene sequences were useful for describing phylogenetic relationships between distantly related Enterobacteriaceae, whereas gyrB sequence comparison was useful for inferring intra- and some intergeneric relationships.
KeywordMeSH Terms
2. Bricker  AL, Diwa  A,     ( 2000 )

An evolutionarily conserved RNA stem-loop functions as a sensor that directs feedback regulation of RNase E gene expression.

Genes & development 14 (10)
PMID : 10817759  :   PMC  :   PMC316614    
Abstract >>
RNase E is a key regulatory enzyme that controls the principal pathway for mRNA degradation in Escherichia coli. The cellular concentration of this endonuclease is governed by a feedback mechanism in which RNase E tightly regulates its own synthesis. Autoregulation is mediated in cis by the 361-nucleotide 5' untranslated region (UTR) of rne (RNase E) mRNA. Here we report the determination of the secondary structure of the rne 5' UTR by phylogenetic comparison and chemical alkylation, together with dissection studies to identify the 5' UTR element that mediates autoregulation. Our findings reveal that the structure and function of the rne 5' UTRs are evolutionarily well conserved despite extensive sequence divergence. Within the rne 5' UTRs are multiple RNA secondary structure elements, two of which function in cis to mediate feedback regulation of rne gene expression. The more potent of these two elements is a stem-loop structure containing an internal loop whose sequence is the most highly conserved of any region of the rne 5' UTR. Our data show that this stem-loop functions as a sensor of cellular RNase E activity that directs autoregulation by modulating the degradation rate of rne mRNA in response to changes in RNase E activity.
KeywordMeSH Terms
Gene Expression Regulation, Bacterial
Nucleic Acid Conformation
3. Pham  HN, Ohkusu  K, Mishima  N, Noda  M, Monir Shah  M, Sun  X, Hayashi  M, Ezaki  T,     ( 2007 )

Phylogeny and species identification of the family Enterobacteriaceae based on dnaJ sequences.

Diagnostic microbiology and infectious disease 58 (2)
PMID : 17368802  :   DOI  :   10.1016/j.diagmicrobio.2006.12.019    
Abstract >>
Phylogenetic relations within the family Enterobacteriaceae were analyzed using partial dnaJ sequences of 165 strains belonging to 93 species from 27 enterobacterial genera. The dnaJ phylogeny was in relative agreement with that constructed by 16S rDNA sequences, but more monophyletic groups were obtained from the dnaJ tree than from the 16S rDNA tree. The degree of divergence of the dnaJ gene was approximately 6 times greater than that of 16S rDNA. Also, the dnaJ gene showed the most discriminatory power in comparison with tuf and atpD genes, facilitating clear differentiation of any 2 enterobacterial species by dnaJ sequence analysis. The application of dnaJ sequences to the identification was confirmed by assigning 72 clinical isolates to the correct enterobacterial species. Our data indicate that analysis of the dnaJ gene sequences can be used as a powerful marker for phylogenetic study and identification at the species level of the family Enterobacteriaceae.
KeywordMeSH Terms
HSP40 Heat-Shock Proteins
Phylogeny
4. Marrero  J, Waldor  MK,     ( 2007 )

The SXT/R391 family of integrative conjugative elements is composed of two exclusion groups.

Journal of bacteriology 189 (8)
PMID : 17307849  :   DOI  :   10.1128/JB.01902-06     PMC  :   PMC1855829    
Abstract >>
Conjugative elements often encode entry exclusion systems that convert host cells into poor recipients for identical or similar elements. The diversity of exclusion systems within families of conjugative elements has received little attention. We report here the most comprehensive study to date of the diversity of exclusion determinants within a single family of conjugative elements. Unexpectedly, our analyses indicate that there are only two exclusion groups among the diverse members of the SXT/R391 family of integrative conjugative elements.
KeywordMeSH Terms
Conjugation, Genetic
5. Giammanco  GM, Grimont  PA, Grimont  F, Lefevre  M, Giammanco  G, Pignato  S,     ( 2011 )

Phylogenetic analysis of the genera Proteus, Morganella and Providencia by comparison of rpoB gene sequences of type and clinical strains suggests the reclassification of Proteus myxofaciens in a new genus, Cosenzaea gen. nov., as Cosenzaea myxofaciens comb. nov.

International journal of systematic and evolutionary microbiology 61 (Pt 7)
PMID : 20709916  :   DOI  :   10.1099/ijs.0.021964-0    
Abstract >>
Phylogenetic analysis of partial rpoB gene sequences of type and clinical strains belonging to different 16S rRNA gene-fingerprinting ribogroups within 11 species of enterobacteria of the genera Proteus, Morganella and Providencia was performed and allowed the definition of rpoB clades, supported by high bootstrap values and confirmed by ?2.5 % nucleotide divergence. None of the resulting clades included strains belonging to different species and the majority of the species were confirmed as discrete and homogeneous. However, more than one distinct rpoB clade could be defined among strains belonging to the species Proteus vulgaris (two clades), Providencia alcalifaciens (two clades) and Providencia rettgeri (three clades), suggesting that some strains represent novel species according to the genotypes outlined by rpoB gene sequence analysis. Percentage differences between the rpoB gene sequence of the type strain of Proteus myxofaciens and other members of the same genus (17.3-18.9 %) were similar to those calculated amongst strains of the genus Providencia (16.4-18.7 %), suggesting a genetic distance at the genus-level between Proteus myxofaciens and the rest of the Proteus-Providencia group. Proteus myxofaciens therefore represents a member of a new genus, for which the name Cosenzaea gen. nov., is proposed.
KeywordMeSH Terms
Phylogeny
6. Juneja  P, Lazzaro  BP,     ( 2009 )

Providencia sneebia sp. nov. and Providencia burhodogranariea sp. nov., isolated from wild Drosophila melanogaster.

International journal of systematic and evolutionary microbiology 59 (Pt 5)
PMID : 19406801  :   DOI  :   10.1099/ijs.0.000117-0    
Abstract >>
Multiple isolates of the genus Providencia were obtained from the haemolymph of wild-caught Drosophila melanogaster fruit flies. Sixteen isolates were distinguished from the six previously described species based on 16S rRNA gene sequences. These isolates belonged to two distinct groups, which we propose each comprise previously undescribed species. Two isolates, designated A(T) and B(T), were characterized by DNA sequences of the fusA, lepA, leuS, gyrB and ileS housekeeping genes, whole-genome DNA-DNA hybridizations with their nearest relatives and utilization of substrates for metabolism. The closest phylogenetic relatives of strain A(T) are strain B(T) (86.9 % identity for the housekeeping genes) and Providencia stuartii DSM 4539(T) (86.0 % identity). The closest phylogenetic relatives of strain B(T) are strain A(T) (86.9 % identity) and P. stuartii DSM 4539(T) (86.6 % identity). The type strains of described species in this genus shared between 84.1 and 90.1 % identity for these sequences. DNA-DNA hybridization between the strain pairs A(T)-B(T), A(T)-P. stuartii DSM 4539(T) and B(T)-P. stuartii DSM 4539(T) all resulted in less than 25 % relatedness. In addition, patterns of utilization of amygdalin, arbutin, aesculin, salicin, d-sorbitol, trehalose, inositol, d-adonitol and d-galactose distinguish strains A(T) and B(T) from other members of this genus. Strains A(T) and B(T) therefore represent novel species, for which the names Providencia sneebia sp. nov. (type strain A(T) =DSM 19967(T) =ATCC BAA-1589(T)) and Providencia burhodogranariea sp. nov. (type strain B(T) =DSM 19968(T) =ATCC BAA-1590(T)) are proposed.
KeywordMeSH Terms
7. Chen  X, Kodama  T, Iida  T, Honda  T,     ( 2007 )

Demonstration and characterization of manganese superoxide dismutase of Providencia alcalifaciens.

Microbiology and immunology 51 (10)
PMID : 17951985  :   DOI  :   10.1111/j.1348-0421.2007.tb03992.x    
Abstract >>
Superoxide dismutases convert superoxide anions to molecular oxygen and hydrogen peroxide. These enzymes constitute one of the major defense mechanisms of cells against oxidative stress and play a role in the pathogenesis of certain invasive bacteria. In this study, we reported for the first time here that Providencia alcalifaciens, a member of the family Enterobacteriaceae, produces a superoxide dismutase (SOD) as a major protein in culture supernatants. This protein was purified by a series of column chromatographic separations. The N-terminal amino acid sequence of the protein was determined to be highly homologous to manganese superoxide dismutase of Escherichia coli or Salmonella reported. The gene (sodA) encoding for SOD of P. alcalifaciens was cloned and sequenced. The sodA-encoded protein has a molecular weight of about 23.5 kDa, and the DNA sequence of P. alcalifaciens sodA gene (627 bp) has about 83% identity to the E. coli SOD gene. We constructed a sodA deletion mutant and its complemented strain of P. alcalifaciens. In J774, a macrophage cell line, the sodA deletion mutant was more susceptible to killing by macrophages than the wildtype strain and its complemented strain. When we injected the mutant strain, its complemented strain and wildtype strain intraperitoneally into DDY strain mice, we found that the sodA deletion mutant proved significantly less virulent while the complemented strain recovered the virulence to the same level of wildtype strain of P. alcalifaciens. These results suggested that manganese superoxide dismutase plays an important role in intracellular survival of P. alcalifaciens.
KeywordMeSH Terms
Superoxide Dismutase
8. Farkas  A, Cr?ciuna?  C, Chiriac  C, Szekeres  E, Coman  C, Butiuc-Keul  A,     ( 2016 )

Exploring the Role of Coliform Bacteria in Class 1 Integron Carriage and Biofilm Formation During Drinking Water Treatment.

Microbial ecology 72 (4)
PMID : 27079455  :   DOI  :   10.1007/s00248-016-0758-0    
Abstract >>
This study investigates the role of coliforms in the carriage of class 1 integron and biocide resistance genes in a drinking water treatment plant and explores the relationship between the carriage of such genes and the biofouling abilities of the strain. The high incidence of class 1 integron and biocide resistance genes (33.3 % of the isolates) highlights the inherent risk of genetic contamination posed by coliform populations during drinking water treatment. The association between the presence of intI1 gene and qac gene cassettes, especially qacH, was greater in biofilm cells. In coliforms recovered from biofilms, a higher frequency of class 1 integron elements and higher diversity of genetic patterns occurred, compared to planktonic cells. The coliform isolates under the study proved to mostly carry non-classical class 1 integrons lacking the typical qacE�G1/sul1 genes or a complete tni module, but bearing the qacH gene. No link was found between the carriage of integron genes and the biofouling degree of the strain, neither in aerobic or in anaerobic conditions. Coliform bacteria isolated from established biofilms rather adhere in oxygen depleted environments, while the colonization ability of planktonic cells is not significantly affected by oxygen availability.
KeywordMeSH Terms
Biofilm assay
Class 1 integron
Planktonic versus biofilm phenotype
qac genes
Biofilm assay
Class 1 integron
Planktonic versus biofilm phenotype
qac genes
Biofilm assay
Class 1 integron
Planktonic versus biofilm phenotype
qac genes
Biofilm assay
Class 1 integron
Planktonic versus biofilm phenotype
qac genes
Biofilm assay
Class 1 integron
Planktonic versus biofilm phenotype
qac genes
Biofilm assay
Class 1 integron
Planktonic versus biofilm phenotype
qac genes
Biofilm assay
Class 1 integron
Planktonic versus biofilm phenotype
qac genes
Biofilm assay
Class 1 integron
Planktonic versus biofilm phenotype
qac genes
Biofilm assay
Class 1 integron
Planktonic versus biofilm phenotype
qac genes
Biofilm assay
Class 1 integron
Planktonic versus biofilm phenotype
qac genes
Biofilm assay
Class 1 integron
Planktonic versus biofilm phenotype
qac genes
9. Woodford  CR, Thoden  JB, Holden  HM,     ( 2015 )

New role for the ankyrin repeat revealed by a study of the N-formyltransferase from Providencia alcalifaciens.

Biochemistry 54 (3)
PMID : 25574689  :   DOI  :   10.1021/bi501539a     PMC  :   PMC5072170    
Abstract >>
N-Formylated sugars such as 3,6-dideoxy-3-formamido-d-glucose (Qui3NFo) have been observed on the lipopolysaccharides of various pathogenic bacteria, including Providencia alcalifaciens, a known cause of gastroenteritis. These unusual carbohydrates are synthesized in vivo as dTDP-linked sugars. The biosynthetic pathway for the production of dTDP-Qui3NFo requires five enzymes with the last step catalyzed by an N-formyltransferase that utilizes N(10)-tetrahydrofolate as a cofactor. Here we describe a structural and functional investigation of the P. alcalifaciens N-formyltransferase, hereafter referred to as QdtF. For this analysis, the structure of the dimeric enzyme was determined in the presence of N(5)-formyltetrahydrofolate, a stable cofactor, and dTDP-3,6-dideoxy-3-amino-d-glucose (dTDP-Qui3N) to 1.5 ? resolution. The overall fold of the subunit consists of three regions with the N-terminal and middle motifs followed by an ankyrin repeat domain. Whereas the ankyrin repeat is a common eukaryotic motif involved in protein-protein interactions, reports of its presence in prokaryotic enzymes have been limited. Unexpectedly, this ankyrin repeat houses a second binding pocket for dTDP-Qui3N, which is characterized by extensive interactions between the protein and the ligand. To address the effects of this second binding site on catalysis, a site-directed mutant protein, W305A, was constructed. Kinetic analyses demonstrated that the catalytic activity of the W305A variant was reduced by approximately 7-fold. The structure of the W305A mutant protein in complex with N(5)-formyltetrahydrofolate and dTDP-Qui3N was subsequently determined to 1.5 ? resolution. The electron density map clearly showed that ligand binding had been completely abolished in the auxiliary pocket. The wild-type enzyme was also tested for activity against dTDP-3,6-dideoxy-3-amino-d-galactose (dTDP-Fuc3N) as a substrate. Strikingly, sigmoidal kinetics indicating homotropic allosteric behavior were observed. Although the identity of the ligand that regulates QdtF activity in vivo is at present unknown, our results still provide the first example of an ankyrin repeat functioning in small molecule binding.
KeywordMeSH Terms
Ankyrin Repeat
10. Liu  J, Wang  L, Knirel  YA, Feng  L, Rozalski  A, Zhou  D, Ovchinnikova  OG, Chen  M,     ( 2012 )

Genetic analysis of the O-antigen of Providencia alcalifaciens O30 and biochemical characterization of a formyltransferase involved in the synthesis of a Qui4N derivative.

Glycobiology 22 (9)
PMID : 22661447  :   DOI  :   10.1093/glycob/cws089    
Abstract >>
O-Antigen is a component of the outer membrane of Gram-negative bacteria and one of the most variable cell surface constituents, giving rise to major antigenic variability. The diversity of O-antigen is almost entirely attributed to genetic variations in O-antigen gene clusters. Bacteria of the genus Providencia are facultative pathogens, which can cause urinary tract infections, wound infections and enteric diseases. Recently, the O-antigen gene cluster of Providencia was localized between the cpxA and yibK genes in the genome. However, few genes involved in the synthesis of Providencia O-antigens have been functionally identified. In this study, the putative O-antigen gene cluster of Providencia alcalifaciens O30 was sequenced and analyzed. Almost all putative genes for the O-antigen synthesis were found, including a novel formyltransferase gene vioF that was proposed to be responsible for the conversion of dTDP-4-amino-4,6- dideoxy-D-glucose (dTDP-D-Qui4N) to dTDP-4,6-dideoxy-4-formamido-D-glucose (dTDP-D-Qui4NFo). vioF was cloned, and the enzyme product was expressed as a His-tagged fusion protein, purified and assayed for its activity. High-performance liquid chromatography was used to monitor the enzyme-substrate reaction, and the structure of the product dTDP-D-Qui4NFo was established by electrospray ionization tandem mass spectrometry and nuclear magnetic resonance spectroscopy. Kinetic parameters of VioF were determined, and effects of temperature and cations on its activity were also examined. Together, the functional analyses support the identification of the O-antigen gene cluster of P. alcalifaciens O30.
KeywordMeSH Terms
11. Ovchinnikova  OG, Liu  B, Guo  D, Kocharova  NA, Shashkov  AS, Chen  M, Feng  L, Rozalski  A, Knirel  YA, Wang  L,     ( 2012 )

Localization and molecular characterization of putative O antigen gene clusters of Providencia species.

Microbiology (Reading, England) 158 (Pt 4)
PMID : 22282517  :   DOI  :   10.1099/mic.0.055210-0    
Abstract >>
Enterobacteria of the genus Providencia are opportunistic human pathogens associated with urinary tract and wound infections, as well as enteric diseases. The lipopolysaccharide (LPS) O antigen confers major antigenic variability upon the cell surface and is used for serotyping of Gram-negative bacteria. Recently, Providencia O antigen structures have been extensively studied, but no data on the location and organization of the O antigen gene cluster have been reported. In this study, the four Providencia genome sequences available were analysed, and the putative O antigen gene cluster was identified in the polymorphic locus between the cpxA and yibK genes. This finding provided the necessary information for designing primers, and cloning and sequencing the O antigen gene clusters from five more Providencia alcalifaciens strains. The gene functions predicted in silico were in agreement with the known O antigen structures; furthermore, annotation of the genes involved in the three-step synthesis of GDP-colitose (gmd, colD and colC) was supported by cloning and biochemical characterization of the corresponding enzymes. In one strain (P. alcalifaciens O39), no polysaccharide product of the gene cluster in the cpxA-yibK locus was found, and hence genes for synthesis of the existing O antigen are located elsewhere in the genome. In addition to the putative O antigen synthesis genes, homologues of wza, wzb, wzc and (in three strains) wzi, required for the surface expression of capsular polysaccharides, were found upstream of yibK in all species except Providencia rustigianii, suggesting that the LPS of these species may be attributed to the so-called K LPS (K(LPS)). The data obtained open a way for development of a PCR-based typing method for identification of Providencia isolates.
KeywordMeSH Terms
Multigene Family
12. Shima  A, Hinenoya  A, Asakura  M, Sugimoto  N, Tsukamoto  T, Ito  H, Nagita  A, Faruque  SM, Yamasaki  S,     ( 2012 )

Molecular characterizations of cytolethal distending toxin produced by Providencia alcalifaciens strains isolated from patients with diarrhea.

Infection and immunity 80 (4)
PMID : 22252871  :   DOI  :   10.1128/IAI.05831-11     PMC  :   PMC3318424    
Abstract >>
Cytolethal distending toxins (CDTs), which block eukaryotic cell proliferation by acting as inhibitory cyclomodulins, are produced by diverse groups of Gram-negative bacteria. Active CDT is composed of three polypeptides--CdtA, CdtB, and CdtC--encoded by the genes cdtA, cdtB, and cdtC, respectively. We developed a PCR-restriction fragment length polymorphism assay for the detection and differentiation of five alleles of cdtB (Cdt-I through Cdt-V) in Escherichia coli and used the assay to investigate the prevalence and characteristic of CDT-producing E. coli in children with diarrhea (A. Hinenoya et al., Microbiol. Immunol. 53:206-215, 2009). In these assays, two untypable cdtB genes were detected and the organisms harboring the cdtB gene were identified as Providencia alcalifaciens (strains AH-31 and AS-1). Nucleotide sequence analysis of the cdt gene cluster revealed that the cdtA, cdtB, and cdtC genes of P. alcalifaciens are of 750, 810, and 549 bp, respectively. To understand the possible horizontal transfer of the cdt genes among closely related species, the presence of cdt genes was screened in various Providencia spp. by colony hybridization assay, and the cdt gene cluster was found in only limited strains of P. alcalifaciens. Genome walking revealed that the cdt gene cluster of P. alcalifaciens is located adjacent to a putative transposase gene, suggesting the locus might be horizontally transferable. Interestingly, the CDT of P. alcalifaciens (PaCDT) showed some homology with the CDT of Shigella boydii. Whereas filter-sterilized lysates of strains AH-31 and AS-1 showed distention of CHO but not of HeLa cells, E. coli CDT-I exhibited distention of both cells. This activity of PaCDT was confirmed by generating recombinant PaCDT protein, which could also be neutralized by rabbit anti-PaCdtB antibody. Furthermore, recombinant PaCDT was found to induce G(2)/M cell cycle arrest and phosphorylation of host histone H2AX, a sensitive marker of DNA double-strand breaks. To our knowledge, this is the first report showing that certain clinical P. alcalifaciens strains could produce variants of the CDTs compared.
KeywordMeSH Terms
13.     ( 2012 )

Structural, serological, and genetic characterization of the O-antigen of Providencia alcalifaciens O40.

FEMS immunology and medical microbiology 66 (3)
PMID : 23163869  :   DOI  :   10.1111/1574-695X.12002    
Abstract >>
The O-polysaccharide chain of the lipopolysaccharide (O-antigen) on the bacterial cell surface is one of the most structurally variable cell components and serves as a basis for serotyping of Gram-negative bacteria, including human opportunistic pathogens of the genus Providencia. In this work, the O-antigen of Providencia alcalifaciens O40 was obtained by mild acid degradation of the isolated lipopolysaccharide and studied by chemical methods and high-resolution NMR spectroscopy. The following structure of the O-polysaccharide was established: ��4)-�]-D-Quip3NFo-(1��3)-�\-D-Galp-(1��3)-�]-D-GlcpA-(1��3)-�]-D-GalpNAc-(1��, where GlcA stands for glucuronic acid and Qui3NFo for 3,6-dideoxy-3-formamidoglucose. The O40-antigen was found to be structurally and serologically related to the O-antigens of P. alcalifaciens O5 and Providencia stuartii O18. The O40-antigen gene cluster between cpxA and yibK was sequenced, and the gene functions were predicted in silico. In agreement with the O-polysaccharide structure established, the genes for the synthesis of dTDP-D-Qui3NFo, UDP-D-Gal, UDP-D-GlcA, and UDP-D-GalNAc as well as those encoding three glycosyltransferases, flippase (Wzx), and O-antigen polymerase (Wzy) were recognized. In addition, homologues of wza, wzb, and wzc genes, which are required for the surface expression of capsular polysaccharides, were found within the gene cluster, suggesting that the O-polysaccharide studied is a part of the capsule-related form of the lipopolysaccharide called K(LPS).
KeywordMeSH Terms

331, Shih-Pin Rd., Hsinchu 30062, Taiwan

Phone: +886-3-5223191

E-mail: bcrcweb@firdi.org.tw

web maintainance: +886-3-5223191 ext 593

Copyright © 2018.BCRC All rights reserved.The duplication or use of information and data such as texts or images or any linkage the website at the "bcrc.firdi.org.tw" is only permitted with the indication of the source or with prior approval by the BCRC(Bioresource Collection and Research Center).