| 1. |
Chavagnat F,
Haueter M,
Jimeno J,
Casey MG,
( 2002 ) Comparison of partial tuf gene sequences for the identification of lactobacilli. PMID : 12480101 : DOI : 10.1111/j.1574-6968.2002.tb11472.x Abstract >>
Comparative analysis of partial tuf sequences was evaluated for the identification and differentiation of lactobacilli. Comparison of the amino acid sequences allowed differentiation between species and also between the subspecies of Lactobacillus delbrueckii. The nucleotide sequence comparison allowed differentiation between other subspecies and between some strains. Lactobacilli from several collections and isolates from dairy samples were clearly identified by comparison of short tuf sequences with those of the type strains. In evaluating the taxonomy of the Lactobacillus casei-related taxa, different tuf amino acid signatures are in favour of a classification into three distinct species. The type strain designation for the L. casei species is discussed.
|
2. |
Scheirlinck I,
Van der Meulen R,
Van Schoor A,
Vancanneyt M,
De Vuyst L,
Vandamme P,
Huys G,
( 2007 ) Influence of geographical origin and flour type on diversity of lactic acid bacteria in traditional Belgian sourdoughs. PMID : 17675431 : DOI : 10.1128/AEM.00894-07 PMC : PMC2075033 Abstract >>
A culture-based approach was used to investigate the diversity of lactic acid bacteria (LAB) in Belgian traditional sourdoughs and to assess the influence of flour type, bakery environment, geographical origin, and technological characteristics on the taxonomic composition of these LAB communities. For this purpose, a total of 714 LAB from 21 sourdoughs sampled at 11 artisan bakeries throughout Belgium were subjected to a polyphasic identification approach. The microbial composition of the traditional sourdoughs was characterized by bacteriological culture in combination with genotypic identification methods, including repetitive element sequence-based PCR fingerprinting and phenylalanyl-tRNA synthase (pheS) gene sequence analysis. LAB from Belgian sourdoughs belonged to the genera Lactobacillus, Pediococcus, Leuconostoc, Weissella, and Enterococcus, with the heterofermentative species Lactobacillus paralimentarius, Lactobacillus sanfranciscensis, Lactobacillus plantarum, and Lactobacillus pontis as the most frequently isolated taxa. Statistical analysis of the identification data indicated that the microbial composition of the sourdoughs is mainly affected by the bakery environment rather than the flour type (wheat, rye, spelt, or a mixture of these) used. In conclusion, the polyphasic approach, based on rapid genotypic screening and high-resolution, sequence-dependent identification, proved to be a powerful tool for studying the LAB diversity in traditional fermented foods such as sourdough.
|
3. |
Stevenson DM,
Muck RE,
Shinners KJ,
Weimer PJ,
( 2006 ) Use of real time PCR to determine population profiles of individual species of lactic acid bacteria in alfalfa silage and stored corn stover. PMID : 16205920 : DOI : 10.1007/s00253-005-0170-z Abstract >>
Real-time polymerase chain reaction (RT-PCR) was used to quantify seven species of lactic acid bacteria (LAB) in alfalfa silage prepared in the presence or absence of four commercial inoculants and in uninoculated corn stover harvested and stored under a variety of field conditions. Species-specific PCR primers were designed based on recA gene sequences. Commercial inoculants improved the quality of alfalfa silage, but species corresponding to those in the inoculants displayed variations in persistence over the next 96 h. Lactobacillus brevis was the most abundant LAB (12 to 32% of total sample DNA) in all of the alfalfa silages by 96 h. Modest populations (up to 10%) of Lactobacillus plantarum were also observed in inoculated silages. Pediococcus pentosaceus populations increased over time but did not exceed 2% of the total. Small populations (0.1 to 1%) of Lactobacillus buchneri and Lactococcus lactis were observed in all silages, while Lactobacillus pentosus and Enterococcus faecium were near or below detection limits. Corn stover generally displayed higher populations of L. plantarum and L. brevis and lower populations of other LAB species. The data illustrate the utility of RT-PCR for quantifying individual species of LAB in conserved forages prepared under a wide variety of conditions.
|
4. |
Malik A,
Radji M,
Kralj S,
Dijkhuizen L,
( 2009 ) Screening of lactic acid bacteria from Indonesia reveals glucansucrase and fructansucrase genes in two different Weissella confusa strains from soya. PMID : 19758326 : DOI : 10.1111/j.1574-6968.2009.01772.x Abstract >>
Homopolysaccharide (glucan and fructan) synthesis from sucrose by sucrase enzymes in lactic acid bacteria (LAB) has been well studied in the genera Leuconostoc, Streptococcus and Lactobacillus. This study aimed to identify and characterize genes encoding glucansucrase/glucosyltransferase (GTF) and fructansucrases/fructosyltransferase (FTF) enzymes from genomic DNA of 'rare' Indonesian exopolysaccharide-producing LAB. From a total of 63 exopolysaccharide-producing LAB isolates obtained from foods, beverages and environmental samples, 18 isolates showing the most slimy and mucoid colony morphologies on sucrose were chosen for further study. By comparing bacterial growth on De Man, Rogosa and Sharpe (MRS)-sucrose with that on MRS-raffinose, and using the results of a previous PCR screening study with degenerate primer pairs targeting the conserved catalytic domain of GTFs, various strains were identified as producers of fructan (13), of glucan only (five) or as potential producers of both glucan and fructan (nine). Here, we report the characteristics of three gtf genes and one ftf gene obtained from Weissella confusa strains MBF8-1 and MBF8-2. Strain MBF8-1 harbored two putative gtf genes with high sequence similarity to GTFB of Lactobacillus reuteri 121 and GTF180 of L. reuteri 180, respectively. Strain MBF8-2 possessed single gtf and ftf genes with high sequence similarity to GTFKg3 of Lactobacillus fermentum Kg3 and DSRWC of Weissella cibaria, and FTF levansucrase of L. reuteri 121, respectively.
|
5. |
De Bruyne K,
Camu N,
De Vuyst L,
Vandamme P,
( 2010 ) Weissella fabaria sp. nov., from a Ghanaian cocoa fermentation. PMID : 19801391 : DOI : 10.1099/ijs.0.019323-0 Abstract >>
Two lactic acid bacteria, strains 257(T) and 252, were isolated from traditional heap fermentations of Ghanaian cocoa beans. 16S rRNA gene sequence analysis of these strains allocated them to the genus Weissella, showing 99.5 % 16S rRNA gene sequence similarity towards Weissella ghanensis LMG 24286(T). Whole-cell protein electrophoresis, fluorescent amplified fragment length polymorphism fingerprinting of whole genomes and biochemical tests confirmed their unique taxonomic position. DNA-DNA hybridization experiments towards their nearest phylogenetic neighbour demonstrated that the two strains represent a novel species, for which we propose the name Weissella fabaria sp. nov., with strain 257(T) (=LMG 24289(T) =DSM 21416(T)) as the type strain. Additional sequence analysis using pheS gene sequences proved useful for identification of all Weissella-Leuconostoc-Oenococcus species and for the recognition of the novel species.
|
6. |
Endo A,
Okada S,
( 2008 ) Reclassification of the genus Leuconostoc and proposals of Fructobacillus fructosus gen. nov., comb. nov., Fructobacillus durionis comb. nov., Fructobacillus ficulneus comb. nov. and Fructobacillus pseudoficulneus comb. nov. PMID : 18768629 : DOI : 10.1099/ijs.0.65609-0 Abstract >>
A taxonomic study was made of the genus Leuconostoc. The species in the genus were divided into three subclusters by phylogenetic analysis based on the 16S rRNA gene sequences. The three subclusters were the Leuconostoc mesenteroides subcluster (comprising L. carnosum, L. citreum, L. gasicomitatum, L. gelidum, L. inhae, L. kimchii, L. lactis, L. mesenteroides and L. pseudomesenteroides), the L. fructosum subcluster (L. durionis, L. ficulneum, L. fructosum and L. pseudoficulneum) and the L. fallax subcluster (L. fallax). Phylogenetic trees based on the sequences of the 16S-23S rRNA gene intergenic spacer region, the rpoC gene or the recA gene indicated a good correlation with the phylogenetic tree based on 16S rRNA gene sequences. The species in the L. fructosum subcluster were morphologically distinguishable from the species in the L. mesenteroides subcluster and L. fallax as species in the L. fructosum subcluster had rod-shaped cells. In addition, the four species in the L. fructosum subcluster needed an electron acceptor for the dissimilation of d-glucose and produced acetic acid from d-glucose rather than ethanol. On the basis of evidence presented in this study, it is proposed that the four species in the L. fructosum subcluster, Leuconostoc durionis, Leuconostoc ficulneum, Leuconostoc fructosum and Leuconostoc pseudoficulneum, should be transferred to a novel genus, Fructobacillus gen. nov., as Fructobacillus durionis comb. nov. (type strain D-24(T)=LMG 22556(T)=CCUG 49949(T)), Fructobacillus ficulneus comb. nov. (type strain FS-1(T)=DSM 13613(T)=JCM 12225(T)), Fructobacillus fructosus comb. nov. (type strain IFO 3516(T)=DSM 20349(T)=JCM 1119(T)=NRIC 1058(T)) and Fructobacillus pseudoficulneus comb. nov. (type strain LC-51(T)=DSM 15468(T)=CECT 5759(T)). The type species of the genus Fructobacillus is Fructobacillus fructosus gen. nov., comb. nov.. No significant physiological and biochemical differences were found between the species in the L. mesenteroides subcluster and L. fallax in the present study and thus L. fallax remains as a member of the genus Leuconostoc.
|
7. |
Scheirlinck I,
Van der Meulen R,
Van Schoor A,
Vancanneyt M,
De Vuyst L,
Vandamme P,
Huys G,
( 2008 ) Taxonomic structure and stability of the bacterial community in belgian sourdough ecosystems as assessed by culture and population fingerprinting. PMID : 18310426 : DOI : 10.1128/AEM.02771-07 PMC : PMC2293155 Abstract >>
A total of 39 traditional sourdoughs were sampled at 11 bakeries located throughout Belgium which were visited twice with a 1-year interval. The taxonomic structure and stability of the bacterial communities occurring in these traditional sourdoughs were assessed using both culture-dependent and culture-independent methods. A total of 1,194 potential lactic acid bacterium (LAB) isolates were tentatively grouped and identified by repetitive element sequence-based PCR, followed by sequence-based identification using 16S rRNA and pheS genes from a selection of genotypically unique LAB isolates. In parallel, all samples were analyzed by denaturing gradient gel electrophoresis (DGGE) of V3-16S rRNA gene amplicons. In addition, extensive metabolite target analysis of more than 100 different compounds was performed. Both culturing and DGGE analysis showed that the species Lactobacillus sanfranciscensis, Lactobacillus paralimentarius, Lactobacillus plantarum, and Lactobacillus pontis dominated the LAB population of Belgian type I sourdoughs. In addition, DGGE band sequence analysis demonstrated the presence of Acetobacter sp. and a member of the Erwinia/Enterobacter/Pantoea group in some samples. Overall, the culture-dependent and culture-independent approaches each exhibited intrinsic limitations in assessing bacterial LAB diversity in Belgian sourdoughs. Irrespective of the LAB biodiversity, a large majority of the sugar and amino acid metabolites were detected in all sourdough samples. Principal component-based analysis of biodiversity and metabolic data revealed only little variation among the two samples of the sourdoughs produced at the same bakery. The rare cases of instability observed could generally be linked with variations in technological parameters or differences in detection capacity between culture-dependent and culture-independent approaches. Within a sampling interval of 1 year, this study reinforces previous observations that the bakery environment rather than the type or batch of flour largely determines the development of a stable LAB population in sourdoughs.
|
8. |
Lerch HP,
Frank R,
Collins J,
( 1989 ) Cloning, sequencing and expression of the L-2-hydroxyisocaproate dehydrogenase-encoding gene of Lactobacillus confusus in Escherichia coli. PMID : 2684788 : DOI : 10.1016/0378-1119(89)90112-1 Abstract >>
The gene (L-HicDH) encoding L-2-hydroxyisocaproate dehydrogenase (L-HicDH) from Lactobacillus confusus was cloned in Escherichia coli. A 69-mer oligodeoxyribonucleotide probe, derived to be complementary to the N-terminal amino acid (aa) coding sequence, was used for screening. The complete nucleotide (nt) sequence of the L-HicDH gene was determined. The 5'-end of the mRNA was mapped by primer extension and the promoter identified. Downstream from the L-HicDH gene is a typical Rho-independent terminator. The aa sequence of L-HicDH, deduced from the nt sequence, has an overall similarity of 30% to the aa sequence of L-lactate dehydrogenase (L-LDH) from Lactobacillus casei. The aa residues involved in binding of coenzyme and substrate are highly conserved in L-HicDH with respect to prokaryotic and eukaryotic L-LDHs. The L-HicDH gene could be expressed under control of phage lambda 'Leftward' and 'rightward' promoters in E. coli up to 35% of total cell protein. The enzyme produced under these conditions exhibits full specific activity and is found exclusively in soluble form.
|
9. |
Kajala I,
Shi Q,
Nyyssölä A,
Maina NH,
Hou Y,
Katina K,
Tenkanen M,
Juvonen R,
( 2015 ) Cloning and characterization of a Weissella confusa dextransucrase and its application in high fibre baking. PMID : 25603169 : DOI : 10.1371/journal.pone.0116418 PMC : PMC4300183 Abstract >>
Wheat bran offers health benefits as a baking ingredient, but is detrimental to bread textural quality. Dextran production by microbial fermentation improves sourdough bread volume and freshness, but extensive acid production during fermentation may negate this effect. Enzymatic production of dextran in wheat bran was tested to determine if dextran-containing bran could be used in baking without disrupting bread texture. The Weissella confusa VTT E-90392 dextransucrase gene was sequenced and His-tagged dextransucrase Wc392-rDSR was produced in Lactococcus lactis. Purified enzyme was characterized using (14)C-sucrose radioisotope and reducing value-based assays, the former yielding K(m) and V(max) values of 14.7 mM and 8.2 �gmol/(mg ? min), respectively, at the pH optimum of 5.4. The structure and size of in vitro dextran product was similar to dextran produced in vivo. Dextran (8.1% dry weight) was produced in wheat bran in 6 h using Wc392-rDSR. Bran with and without dextran was used in wheat baking at 20% supplementation level. Dextran presence improved bread softness and neutralized bran-induced volume loss, clearly demonstrating the potential of using dextransucrases in bran bioprocessing for use in baking.
|
10. |
Sun Z,
Harris HM,
McCann A,
Guo C,
Argimón S,
Zhang W,
Yang X,
Jeffery IB,
Cooney JC,
Kagawa TF,
Liu W,
Song Y,
Salvetti E,
Wrobel A,
Rasinkangas P,
Parkhill J,
Rea MC,
O'Sullivan O,
Ritari J,
Douillard FP,
Paul Ross R,
Yang R,
Briner AE,
Felis GE,
de Vos WM,
Barrangou R,
Klaenhammer TR,
Caufield PW,
Cui Y,
Zhang H,
O'Toole PW,
( 2015 ) Expanding the biotechnology potential of lactobacilli through comparative genomics of 213 strains and associated genera. PMID : 26415554 : DOI : 10.1038/ncomms9322 PMC : PMC4667430 Abstract >>
Lactobacilli are a diverse group of species that occupy diverse nutrient-rich niches associated with humans, animals, plants and food. They are used widely in biotechnology and food preservation, and are being explored as therapeutics. Exploiting lactobacilli has been complicated by metabolic diversity, unclear species identity and uncertain relationships between them and other commercially important lactic acid bacteria. The capacity for biotransformations catalysed by lactobacilli is an untapped biotechnology resource. Here we report the genome sequences of 213 Lactobacillus strains and associated genera, and their encoded genetic catalogue for modifying carbohydrates and proteins. In addition, we describe broad and diverse presence of novel CRISPR-Cas immune systems in lactobacilli that may be exploited for genome editing. We rationalize the phylogenomic distribution of host interaction factors and bacteriocins that affect their natural and industrial environments, and mechanisms to withstand stress during technological processes. We present a robust phylogenomic framework of existing species and for classifying new species.
|
11. |
Murphree CA,
Heist EP,
Moe LA,
( 2014 ) Antibiotic resistance among cultured bacterial isolates from bioethanol fermentation facilities across the United States. PMID : 24748439 : DOI : 10.1007/s00284-014-0583-y Abstract >>
Bacterial contamination of fuel ethanol fermentations by lactic acid bacteria (LAB) can have crippling effects on bioethanol production. Producers have had success controlling bacterial growth through prophylactic addition of antibiotics to fermentors, yet concerns have arisen about antibiotic resistance among the LAB. Here, we report on mechanisms used by 32 LAB isolates from eight different US bioethanol facilities to persist under conditions of antibiotic stress. Minimum inhibitory concentration assays with penicillin, erythromycin, and virginiamycin revealed broad resistance to each of the antibiotics as well as high levels of resistance to individual antibiotics. Phenotypic assays revealed that antibiotic inactivation mechanisms contributed to the high levels of individual resistances among the isolates, especially to erythromycin and virginiamycin, yet none of the isolates appeared to use a �]-lactamase. Biofilm formation was noted among the majority of the isolates and may contribute to persistence under low levels of antibiotics. Nearly all of the isolates carried at least one canonical antibiotic resistance gene and many carried more than one. The erythromycin ribosomal methyltransferase (erm) gene class was found in 19 of 32 isolates, yet a number of these isolates exhibit little to no resistance to erythromycin. The erm genes were present in 15 isolates that encoded more than one antibiotic resistance mechanism, suggestive of potential genetic linkages.
|
12. |
Malang SK,
Maina NH,
Schwab C,
Tenkanen M,
Lacroix C,
( 2015 ) Characterization of exopolysaccharide and ropy capsular polysaccharide formation by Weissella. PMID : 25475311 : DOI : 10.1016/j.fm.2014.08.022 Abstract >>
With their broad functional properties, lactic acid bacteria derived high molar mass exopolysaccharides (EPS) and oligosaccharides are of great interest for food, medical and pharmaceutical industry. EPS formation by 123 strains of Weissella cibaria and Weissella confusa, was evaluated. Dextran formation from sucrose was observed for all tested strains while 18 strains produced fructan in addition to dextran. Six isolates synthesized a highly ropy polymer from glucose associated with the formation of a cell-bound, capsular polysaccharide (CPS) composed of glucose, O-acetyl groups and two unidentified monomer components. The soluble EPSs of nine strains were identified as low �\-1,3-branched dextran, levan and inulin type polymers using NMR. In addition to glucan and fructan, W. confusa produced gluco- and fructooligosaccharides. Partial dextransucrase and fructansucrase sequences were characterized in the selected Weissella strains. Our study reports the first structural characterization of fructan type EPS from Weissella as well as the first Weissella strain producing inulin. Production of more than one EPS-type by single strains may have high potential for development of applications combining EPS technological and nutritional benefits.
|
13. |
Elisha BG,
Courvalin P,
( 1995 ) Analysis of genes encoding D-alanine:D-alanine ligase-related enzymes in Leuconostoc mesenteroides and Lactobacillus spp. PMID : 7828933 : DOI : 10.1016/0378-1119(94)00692-l Abstract >>
Degenerate oligodeoxyribonucleotides complementary to sequences encoding conserved amino acid (aa) motifs in D-alanine:D-alanine ligases (Ddl) were used to amplify approx. 600-bp fragments from glycopeptide-resistant strains of Leuconostoc mesenteroides (Lm), Lactobacillus plantarum, La. salivarius and La. confusus, and from a susceptible strain of La. leichmannii. Comparison of the deduced aa sequences of the PCR products revealed that the Ddl-related enzymes of resistant Lm and Lactobacillus spp. are more akin to each other (47-63% aa identity) than to that of susceptible La. leichmannii (33-37% aa identity), indicating that the Ddl-related enzymes in these intrinsically resistant species of Gram+ bacteria exhibit structural differences with those in susceptible species. The Ddl-related enzymes, VanA and VanB, implicated in acquired resistance to glycopeptides in enterococci, were not closely related to their counterparts in Lm and Lactobacillus spp., as they displayed only 26-32% aa identity.
|
14. |
Niefind K,
Hecht HJ,
Schomburg D,
( 1995 ) Crystal structure of L-2-hydroxyisocaproate dehydrogenase from Lactobacillus confusus at 2.2 A resolution. An example of strong asymmetry between subunits. PMID : 7643402 : DOI : 10.1006/jmbi.1995.0433 Abstract >>
L-2-Hydroxyisocaproate dehydrogenase (L-HicDH) from Lactobacillus confusus, a homotetramer with a molecular mass of 33 kDa per subunit, belongs to the protein family of the NAD(+)-dependent L-2-hydroxycarboxylate dehydrogenases. L-HicDH was crystallized with ammonium sulphate as precipitant in the presence of NAD+. The crystals belong to the trigonal space group P3(2)21, with a = 135.9 A and c = 205.9 A, and diffract X-rays to 2.2 A resolution. The crystal structure was solved by Patterson search and molecular replacement techniques and refined to an R-value of 21.4% (2.2 to 8 A). The final structure model contains one NAD+ molecule and one sulphate ion per subunit, with 309 water molecules. An unusual feature of this crystal structure is the deviation of the protein subunits from non-crystallographic symmetry, which is so strong that it can be detected globally by self-rotation calculations in reciprocal space. This asymmetry is especially pronounced in the environment of the active site; it is reflected also in the nicotinamide conformation of NAD+ and allows some conclusions to be drawn about the catalytic mechanism. In this context, an "inner active site loop" is identified as a structural element of fundamental functional importance. Furthermore, with knowledge of the crystal structure of L-HicDH the differences in substrate specificity between L-HicDH and the L-lactate dehydrogenases can be partly explained.
|
15. |
Parks DH,
Chuvochina M,
Waite DW,
Rinke C,
Skarshewski A,
Chaumeil PA,
Hugenholtz P,
( 2018 ) A standardized bacterial taxonomy based on genome phylogeny substantially revises the tree of life. PMID : 30148503 : DOI : 10.1038/nbt.4229 Abstract >>
Taxonomy is an organizing principle of biology and is ideally based on evolutionary relationships among organisms. Development of a robust bacterial taxonomy has been hindered by an inability to obtain most bacteria in pure culture and, to a lesser extent, by the historical use of phenotypes to guide classification. Culture-independent sequencing technologies have matured sufficiently that a comprehensive genome-based taxonomy is now possible. We used a concatenated protein phylogeny as the basis for a bacterial taxonomy that conservatively removes polyphyletic groups and normalizes taxonomic ranks on the basis of relative evolutionary divergence. Under this approach, 58% of the 94,759 genomes comprising the Genome Taxonomy Database had changes to their existing taxonomy. This result includes the description of 99 phyla, including six major monophyletic units from the subdivision of the Proteobacteria, and amalgamation of the Candidate Phyla Radiation into a single phylum. Our taxonomy should enable improved classification of uncultured bacteria and provide a sound basis for ecological and evolutionary studies.
|