BCRC Strain Collection Catalog & Shopping Cart

  Home / BCRC Content / 14423 / 

Return

  Research Article

The information shown in this page was generated using the cross-referenced linkage within public domain database between their strains and BCRC related strains. Usually the information provided from public domain databases varies with different confidences and errors, BCRC provides the related information here at best effort, but BCRC doesn't take the responsibility about the correctness of the information provided here.

1. Darnault  C, Volbeda  A, Kim  EJ, Legrand  P, Vernède  X, Lindahl  PA, Fontecilla-Camps  JC,     ( 2003 )

Ni-Zn-[Fe4-S4] and Ni-Ni-[Fe4-S4] clusters in closed and open subunits of acetyl-CoA synthase/carbon monoxide dehydrogenase.

Nature structural biology 10 (4)
PMID : 12627225  :   DOI  :   10.1038/nsb912    
Abstract >>
The crystal structure of the tetrameric alpha2beta2 acetyl-coenzyme A synthase/carbon monoxide dehydrogenase from Moorella thermoacetica has been solved at 1.9 A resolution. Surprisingly, the two alpha subunits display different (open and closed) conformations. Furthermore, X-ray data collected from crystals near the absorption edges of several metal ions indicate that the closed form contains one Zn and one Ni at its active site metal cluster (A-cluster) in the alpha subunit, whereas the open form has two Ni ions at the corresponding positions. Alternative metal contents at the active site have been observed in a recent structure of the same protein in which A-clusters contained one Cu and one Ni, and in reconstitution studies of a recombinant apo form of a related acetyl-CoA synthase. On the basis of our observations along with previously reported data, we postulate that only the A-clusters containing two Ni ions are catalytically active.
KeywordMeSH Terms
2. Doukov  TI, Iverson  TM, Seravalli  J, Ragsdale  SW, Drennan  CL,     ( 2002 )

A Ni-Fe-Cu center in a bifunctional carbon monoxide dehydrogenase/acetyl-CoA synthase.

Science (New York, N.Y.) 298 (5593)
PMID : 12386327  :   DOI  :   10.1126/science.1075843    
Abstract >>
A metallocofactor containing iron, sulfur, copper, and nickel has been discovered in the enzyme carbon monoxide dehydrogenase/acetyl-CoA (coenzyme A) synthase from Moorella thermoacetica (f. Clostridium thermoaceticum). Our structure at 2.2 angstrom resolution reveals that the cofactor responsible for the assembly of acetyl-CoA contains a [Fe4S4] cubane bridged to a copper-nickel binuclear site. The presence of these three metals together in one cluster was unanticipated and suggests a newly discovered role for copper in biology. The different active sites of this bifunctional enzyme complex are connected via a channel, 138 angstroms long, that provides a conduit for carbon monoxide generated at the C-cluster on one subunit to be incorporated into acetyl-CoA at the A-cluster on the other subunit.
KeywordMeSH Terms
3. Das  A, Coulter  ED, Kurtz  DM, Ljungdahl  LG,     ( 2001 )

Five-gene cluster in Clostridium thermoaceticum consisting of two divergent operons encoding rubredoxin oxidoreductase- rubredoxin and rubrerythrin-type A flavoprotein- high-molecular-weight rubredoxin.

Journal of bacteriology 183 (5)
PMID : 11160086  :   DOI  :   10.1128/JB.183.5.1560-1567.2001     PMC  :   PMC95040    
Abstract >>
A five-gene cluster encoding four nonheme iron proteins and a flavoprotein from the thermophilic anaerobic bacterium Clostridium thermoaceticum (Moorella thermoacetica) was cloned and sequenced. Based on analysis of deduced amino acid sequences, the genes were identified as rub (rubredoxin), rbo (rubredoxin oxidoreductase), rbr (rubrerythrin), fprA (type A flavoprotein), and a gene referred to as hrb (high-molecular-weight rubredoxin). Northern blot analysis demonstrated that the five-gene cluster is organized as two subclusters, consisting of two divergently transcribed operons, rbr-fprA-hrb and rbo-rub. The rbr, fprA, and rub genes were expressed in Escherichia coli, and their encoded recombinant proteins were purified. The molecular masses, UV-visible absorption spectra, and cofactor contents of the recombinant rubrerythrin, rubredoxin, and type A flavoprotein were similar to those of respective homologs from other microorganisms. Antibodies raised against Desulfovibrio vulgaris Rbr reacted with both native and recombinant Rbr from C. thermoaceticum, indicating that this protein was expressed in the native organism. Since Rbr and Rbo have been recently implicated in oxidative stress protection in several anaerobic bacteria and archaea, we suggest a similar function of these proteins in oxygen tolerance of C. thermoaceticum.
KeywordMeSH Terms
4. Radfar  R, Leaphart  A, Brewer  JM, Minor  W, Odom  JD, Dunlap  RB, Lovell  CR, Lebioda  L,     ( 2000 )

Cation binding and thermostability of FTHFS monovalent cation binding sites and thermostability of N10-formyltetrahydrofolate synthetase from Moorella thermoacetica.

Biochemistry 39 (47)
PMID : 11087401  :   DOI  :   10.1021/bi001577w    
Abstract >>
Formyltetrahydrofolate synthetase (FTHFS) from the thermophilic homoacetogen, Moorella thermoacetica, has an optimum temperature for activity of 55-60 degrees C and requires monovalent cations for both optimal activity and stabilization of tetrameric structure at higher temperatures. The crystal structures of complexes of FTHFS with cesium and potassium ions were examined and monovalent cation binding positions identified. Unexpectedly, NH(4)(+) and K(+), both of which are strongly activating ions, bind at a different site than a moderately activating ion, Cs(+), does. Neither binding site is located in the active site. The sites are 7 A apart, but in each of them, the side chain of Glu 98, which is conserved in all known bacterial FTHFS sequences, participates in metal ion binding. Other ligands in the Cs(+) binding site are four oxygen atoms of main chain carbonyls and water molecules. The K(+) and NH(4)(+) binding site includes the carboxylate of Asp132 in addition to Glu98. Mutant FTHFS's (E98Q, E98D, and E98S) were obtained and analyzed using differential scanning calorimetry to examine the effect of these mutations on the thermostability of the enzyme with and without added K(+) ions. The addition of 0.2 M K(+) ions to the wild-type enzyme resulted in a 10 degrees C increase in the thermal denaturation temperature. No significant increase was observed in E98D or E98S. The lack of a significant effect of monovalent cations on the stability of E98D and E98S indicates that this alteration of the binding site eliminates cation binding. The thermal denaturation temperature of E98Q was 3 degrees C higher than that of the wild-type enzyme in the absence of the cation, indicating that the removal of the unbalanced, buried charge of Glu98 stabilizes the enzyme. These results confirm that Glu98 is a crucial residue in the interaction of monovalent cations with FTHFS.
KeywordMeSH Terms
5. Rohdich  F, Wiese  A, Feicht  R, Simon  H, Bacher  A,     ( 2001 )

Enoate reductases of Clostridia. Cloning, sequencing, and expression.

The Journal of biological chemistry 276 (8)
PMID : 11060310  :   DOI  :   10.1074/jbc.M008656200    
Abstract >>
The enr genes specifying enoate reductases of Clostridium tyrobutyricum and Clostridium thermoaceticum were cloned and sequenced. Sequence comparison shows that enoate reductases are similar to a family of flavoproteins comprising 2,4-dienoyl-coenzyme A reductase from Escherichia coli and old yellow enzyme from yeast. The C. thermoaceticum enr gene product was expressed in recombinant Escherichia coli cells growing under anaerobic conditions. The recombinant enzyme was purified and characterized.
KeywordMeSH Terms
Oxidoreductases Acting on CH-CH Group Donors
6. Doukov  T, Seravalli  J, Stezowski  JJ, Ragsdale  SW,     ( 2000 )

Crystal structure of a methyltetrahydrofolate- and corrinoid-dependent methyltransferase.

Structure (London, England : 1993) 8 (8)
PMID : 10997901  :  
Abstract >>
Methyltetrahydrofolate, corrinoid iron-sulfur protein methyltransferase (MeTr), catalyzes a key step in the Wood-Ljungdahl pathway of carbon dioxide fixation. It transfers the N5-methyl group from methyltetrahydrofolate (CH3-H4folate) to a cob(I)amide center in another protein, the corrinoid iron-sulfur protein. MeTr is a member of a family of proteins that includes methionine synthase and methanogenic enzymes that activate the methyl group of methyltetra-hydromethano(or -sarcino)pterin. We report the first structure of a protein in this family. We determined the crystal structure of MeTr from Clostridium thermoaceticum at 2.2 A resolution using multiwavelength anomalous diffraction methods. The overall architecture presents a new functional class of the versatile triose phosphate isomerase (TIM) barrel fold. The MeTr tertiary structure is surprisingly similar to the crystal structures of dihydropteroate synthetases despite sharing less than 20% sequence identity. This homology permitted the methyl-H4folate binding site to be modeled. The model suggests extensive conservation of the pterin ring binding residues in the polar active sites of the methyltransferases and dihydropteroate synthetases. The most significant structural difference between these enzymes is in a loop structure above the active site. It is quite open in MeTr, where it can be modeled as the cobalamin binding site. The MeTr structure consists of a TIM barrel that embeds methyl-H4folate and cobamide. All related methyltransferases are predicted to fold into a similar TIM barrel pattern and have a similar pterin and cobamide binding site. The observed structure is consistent with either a 'front' (N5) or 'back' (C8a) side protonation of CH3-H4folate, a key step that enhances the electrophilic character of the methyl group, activating it for nucleophilic attack by Co(I).
KeywordMeSH Terms
7. Lovell  CR, Odom  JD, Minor  W, Sheldrick  GM, Shin  R, Radfar  R,     ( 2000 )

The crystal structure of N(10)-formyltetrahydrofolate synthetase from Moorella thermoacetica.

Biochemistry 39 (14)
PMID : 10747779  :   DOI  :   10.1021/bi992790z    
Abstract >>
The structure was solved at 2.5 A resolution using multiwavelength anomalous dispersion (MAD) scattering by Se-Met residues. The subunit of N(10)-formyltetrahydrofolate synthetase is composed of three domains organized around three mixed beta-sheets. There are two cavities between adjacent domains. One of them was identified as the nucleotide binding site by homology modeling. The large domain contains a seven-stranded beta-sheet surrounded by helices on both sides. The second domain contains a five-stranded beta-sheet with two alpha-helices packed on one side while the other two are a wall of the active site cavity. The third domain contains a four-stranded beta-sheet forming a half-barrel. The concave side is covered by two helices while the convex side is another wall of the large cavity. Arg 97 is likely involved in formyl phosphate binding. The tetrameric molecule is relatively flat with the shape of the letter X, and the active sites are located at the end of the subunits far from the subunit interface.
KeywordMeSH Terms
8. Morton  TA, Runquist  JA, Ragsdale  SW, Shanmugasundaram  T, Wood  HG, Ljungdahl  LG,     ( 1991 )

The primary structure of the subunits of carbon monoxide dehydrogenase/acetyl-CoA synthase from Clostridium thermoaceticum.

The Journal of biological chemistry 266 (35)
PMID : 1748656  :  
Abstract >>
CO dehydrogenase/acetyl-coenzyme A synthase (CODH) is the central enzyme in the pathway of acetyl-coenzyme A biosynthesis in Clostridium thermoaceticum. It catalyzes the interconversion of CO and CO2 and the synthesis of acetyl-coenzyme A from the methylated corrinoid/iron sulfur protein, CO, and coenzyme A. It is a nickel-iron-sulfur protein and contains two subunits in the form (alpha beta)3. Reported here is the cloning and sequencing of the genes for both subunits of CODH. The gene for the alpha subunit codes for a protein with 729 amino acids and a molecular weight of 81,730, and the beta gene for a protein with 674 amino acids and a molecular weight of 72,928. The alpha subunit follows the beta subunit by 23 bases and the genes for both subunits are preceded by a sequence which is similar to the Shine-Dalgarno sequence of Escherichia coli. No significant amino acid sequence homology has been found to any known sequence. Labeling CODH with 2,4-dinitrophenylsulfenyl chloride and isolating labeled peptide fragments demonstrated that a tryptophan, residue 418 of the alpha subunit, is protected by coenzyme A and thus may be considered a potential part of the coenzyme A site.
KeywordMeSH Terms
Multienzyme Complexes
9. Jämsen  J, Tuominen  H, Salminen  A, Belogurov  GA, Magretova  NN, Baykov  AA, Lahti  R,     ( 2007 )

A CBS domain-containing pyrophosphatase of Moorella thermoacetica is regulated by adenine nucleotides.

The Biochemical journal 408 (3)
PMID : 17714078  :   DOI  :   10.1042/BJ20071017     PMC  :   PMC2267367    
Abstract >>
CBS (cystathionine beta-synthase) domains are found in proteins from all kingdoms of life, and point mutations in these domains are responsible for a variety of hereditary diseases in humans; however, the functions of CBS domains are not well understood. In the present study, we cloned, expressed in Escherichia coli, and characterized a family II PPase (inorganic pyrophosphatase) from Moorella thermoacetica (mtCBS-PPase) that has a pair of tandem 60-amino-acid CBS domains within its N-terminal domain. Because mtCBS-PPase is a dimer and requires transition metal ions (Co2+ or Mn2+) for activity, it resembles common family II PPases, which lack CBS domains. The mtCBS-PPase, however, has lower activity than common family II PPases, is potently inhibited by ADP and AMP, and is activated up to 1.6-fold by ATP. Inhibition by AMP is competitive, whereas inhibition by ADP and activation by ATP are both of mixed types. The nucleotides are effective at nanomolar (ADP) or micromolar concentrations (AMP and ATP) and appear to compete for the same site on the enzyme. The nucleotide-binding affinities are thus 100-10000-fold higher than for other CBS-domain-containing proteins. Interestingly, genes encoding CBS-PPase occur most frequently in bacteria that have a membrane-bound H+-translocating PPase with a comparable PP(i)-hydrolysing activity. Our results suggest that soluble nucleotide-regulated PPases act as amplifiers of metabolism in bacteria by enhancing or suppressing ATP production and biosynthetic reactions at high and low [ATP]/([AMP]+[ADP]) ratios respectively.
KeywordMeSH Terms
10. Doukov  TI, Hemmi  H, Drennan  CL, Ragsdale  SW,     ( 2007 )

Structural and kinetic evidence for an extended hydrogen-bonding network in catalysis of methyl group transfer. Role of an active site asparagine residue in activation of methyl transfer by methyltransferases.

The Journal of biological chemistry 282 (9)
PMID : 17172470  :   DOI  :   10.1074/jbc.M609828200     PMC  :   PMC3966722    
Abstract >>
The methyltetrahydrofolate (CH(3)-H(4)folate) corrinoid-iron-sulfur protein (CFeSP) methyltransferase (MeTr) catalyzes transfer of the methyl group of CH(3)-H(4)folate to cob(I)amide. This key step in anaerobic CO and CO(2) fixation is similar to the first half-reaction in the mechanisms of other cobalamin-dependent methyltransferases. Methyl transfer requires electrophilic activation of the methyl group of CH(3)-H(4)folate, which includes proton transfer to the N5 group of the pterin ring and poises the methyl group for reaction with the Co(I) nucleophile. The structure of the binary CH(3)-H(4)folate/MeTr complex (revealed here) lacks any obvious proton donor near the N5 group. Instead, an Asn residue and water molecules are found within H-bonding distance of N5. Structural and kinetic experiments described here are consistent with the involvement of an extended H-bonding network in proton transfer to N5 of the folate that includes an Asn (Asn-199 in MeTr), a conserved Asp (Asp-160), and a water molecule. This situation is reminiscent of purine nucleoside phosphorylase, which involves protonation of the purine N7 in the transition state and is accomplished by an extended H-bond network that includes water molecules, a Glu residue, and an Asn residue (Kicska, G. A., Tyler, P. C., Evans, G. B., Furneaux, R. H., Shi, W., Fedorov, A., Lewandowicz, A., Cahill, S. M., Almo, S. C., and Schramm, V. L. (2002) Biochemistry 41, 14489-14498). In MeTr, the Asn residue swings from a distant position to within H-bonding distance of the N5 atom upon CH(3)-H(4)folate binding. An N199A variant exhibits only approximately 20-fold weakened affinity for CH(3)-H(4)folate but a much more marked 20,000-40,000-fold effect on catalysis, suggesting that Asn-199 plays an important role in stabilizing a transition state or high energy intermediate for methyl transfer.
KeywordMeSH Terms
Asparagine
Hydrogen Bonding
11. Hill  JE, Penny  SL, Crowell  KG, Goh  SH, Hemmingsen  SM,     ( 2004 )

cpnDB: a chaperonin sequence database.

Genome research 14 (8)
PMID : 15289485  :   DOI  :   10.1101/gr.2649204     PMC  :   PMC509277    
Abstract >>
Type I chaperonins are molecular chaperones present in virtually all bacteria, some archaea and the plastids and mitochondria of eukaryotes. Sequences of cpn60 genes, encoding 60-kDa chaperonin protein subunits (CPN60, also known as GroEL or HSP60), are useful for phylogenetic studies and as targets for detection and identification of organisms. Conveniently, a 549-567-bp segment of the cpn60 coding region can be amplified with universal PCR primers. Here, we introduce cpnDB, a curated collection of cpn60 sequence data collected from public databases or generated by a network of collaborators exploiting the cpn60 target in clinical, phylogenetic, and microbial ecology studies. The growing database currently contains approximately 2000 records covering over 240 genera of bacteria, eukaryotes, and archaea. The database also contains over 60 sequences for the archaeal Type II chaperonin (thermosome, a homolog of eukaryotic cytoplasmic chaperonin) from 19 archaeal genera. As the largest curated collection of sequences available for a protein-encoding gene, cpnDB provides a resource for researchers interested in exploiting the power of cpn60 as a diagnostic or as a target for phylogenetic or microbial ecology studies, as well as those interested in broader subjects such as lateral gene transfer and codon usage. We built cpnDB from open source tools and it is available at http://cpndb.cbr.nrc.ca.
KeywordMeSH Terms
12. Gagen  EJ, Denman  SE, Padmanabha  J, Zadbuke  S, Al Jassim  R, Morrison  M, McSweeney  CS,     ( 2010 )

Functional gene analysis suggests different acetogen populations in the bovine rumen and tammar wallaby forestomach.

Applied and environmental microbiology 76 (23)
PMID : 20889794  :   DOI  :   10.1128/AEM.01679-10     PMC  :   PMC2988603    
Abstract >>
Reductive acetogenesis via the acetyl coenzyme A (acetyl-CoA) pathway is an alternative hydrogen sink to methanogenesis in the rumen. Functional gene-based analysis is the ideal approach for investigating organisms capable of this metabolism (acetogens). However, existing tools targeting the formyltetrahydrofolate synthetase gene (fhs) are compromised by lack of specificity due to the involvement of formyltetrahydrofolate synthetase (FTHFS) in other pathways. Acetyl-CoA synthase (ACS) is unique to the acetyl-CoA pathway and, in the present study, acetyl-CoA synthase genes (acsB) were recovered from a range of acetogens to facilitate the design of acsB-specific PCR primers. fhs and acsB libraries were used to examine acetogen diversity in the bovine rumen and forestomach of the tammar wallaby (Macropus eugenii), a native Australian marsupial demonstrating foregut fermentation analogous to rumen fermentation but resulting in lower methane emissions. Novel, deduced amino acid sequences of acsB and fhs affiliated with the Lachnospiraceae in both ecosystems and the Ruminococcaeae/Blautia group in the rumen. FTHFS sequences that probably originated from nonacetogens were identified by low "homoacetogen similarity" scores based on analysis of FTHFS residues, and comprised a large proportion of FTHFS sequences from the tammar wallaby forestomach. A diversity of FTHFS and ACS sequences in both ecosystems clustered between the Lachnospiraceae and Clostridiaceae acetogens but without close sequences from cultured isolates. These sequences probably originated from novel acetogens. The community structures of the acsB and fhs libraries from the rumen and the tammar wallaby forestomach were different (LIBSHUFF, P < 0.001), and these differences may have significance for overall hydrogenotrophy in both ecosystems.
KeywordMeSH Terms
Biodiversity
13. Hazra  AB, Han  AW, Mehta  AP, Mok  KC, Osadchiy  V, Begley  TP, Taga  ME,     ( 2015 )

Anaerobic biosynthesis of the lower ligand of vitamin B12.

Proceedings of the National Academy of Sciences of the United States of America 112 (34)
PMID : 26246619  :   DOI  :   10.1073/pnas.1509132112     PMC  :   PMC4553811    
Abstract >>
Vitamin B12 (cobalamin) is required by humans and other organisms for diverse metabolic processes, although only a subset of prokaryotes is capable of synthesizing B12 and other cobamide cofactors. The complete aerobic and anaerobic pathways for the de novo biosynthesis of B12 are known, with the exception of the steps leading to the anaerobic biosynthesis of the lower ligand, 5,6-dimethylbenzimidazole (DMB). Here, we report the identification and characterization of the complete pathway for anaerobic DMB biosynthesis. This pathway, identified in the obligate anaerobic bacterium Eubacterium limosum, is composed of five previously uncharacterized genes, bzaABCDE, that together direct DMB production when expressed in anaerobically cultured Escherichia coli. Expression of different combinations of the bza genes revealed that 5-hydroxybenzimidazole, 5-methoxybenzimidazole, and 5-methoxy-6-methylbenzimidazole, all of which are lower ligands of cobamides produced by other organisms, are intermediates in the pathway. The bza gene content of several bacterial and archaeal genomes is consistent with experimentally determined structures of the benzimidazoles produced by these organisms, indicating that these genes can be used to predict cobamide structure. The identification of the bza genes thus represents the last remaining unknown component of the biosynthetic pathway for not only B12 itself, but also for three other cobamide lower ligands whose biosynthesis was previously unknown. Given the importance of cobamides in environmental, industrial, and human-associated microbial metabolism, the ability to predict cobamide structure may lead to an improved ability to understand and manipulate microbial metabolism.
KeywordMeSH Terms
5,6-dimethylbenzimidazole
biosynthesis
cobalamin
cobamide
vitamin B12
5,6-dimethylbenzimidazole
biosynthesis
cobalamin
cobamide
vitamin B12
14. Kung  Y, Ando  N, Doukov  TI, Blasiak  LC, Bender  G, Seravalli  J, Ragsdale  SW, Drennan  CL,     ( 2012 )

Visualizing molecular juggling within a B12-dependent methyltransferase complex.

Nature 484 (7393)
PMID : 22419154  :   DOI  :   10.1038/nature10916     PMC  :   PMC3326194    
Abstract >>
Derivatives of vitamin B(12) are used in methyl group transfer in biological processes as diverse as methionine synthesis in humans and CO(2) fixation in acetogenic bacteria. This seemingly straightforward reaction requires large, multimodular enzyme complexes that adopt multiple conformations to alternately activate, protect and perform catalysis on the reactive B(12) cofactor. Crystal structures determined thus far have provided structural information for only fragments of these complexes, inspiring speculation about the overall protein assembly and conformational movements inherent to activity. Here we present X-ray crystal structures of a complete 220 kDa complex that contains all enzymes responsible for B(12)-dependent methyl transfer, namely the corrinoid iron-sulphur protein and its methyltransferase from the model acetogen Moorella thermoacetica. These structures provide the first three-dimensional depiction of all protein modules required for the activation, protection and catalytic steps of B(12)-dependent methyl transfer. In addition, the structures capture B(12) at multiple locations between its 'resting' and catalytic positions, allowing visualization of the dramatic protein rearrangements that enable methyl transfer and identification of the trajectory for B(12) movement within the large enzyme scaffold. The structures are also presented alongside in crystallo spectroscopic data, which confirm enzymatic activity within crystals and demonstrate the largest known conformational movements of proteins in a crystalline state. Taken together, this work provides a model for the molecular juggling that accompanies turnover and helps explain why such an elaborate protein framework is required for such a simple, yet biologically essential reaction.
KeywordMeSH Terms
15. Lovell  CR, Przybyla  A, Ljungdahl  LG,     ( 1990 )

Primary structure of the thermostable formyltetrahydrofolate synthetase from Clostridium thermoaceticum.

Biochemistry 29 (24)
PMID : 2200509  :   DOI  :   10.1021/bi00476a007    
Abstract >>
The complete nucleotide sequence of the Clostridium thermoaceticum formyltetrahydrofolate synthetase (FTHFS) was determined and the primary structure of the protein predicted. The gene was 1680 nucleotides long, encoding a protein of 559 amino acid residues with a calculated subunit molecular weight of 59,983. The initiation codon was UUG, with a probable ribosome binding site 11 bases upstream. A putative ATP binding domain was identified. Two Cys residues likely to be involved in subunit aggregation were tentatively identified. No characterization of the tetrahydrofolate (THF) binding domain was possible on the basis of the sequence. A high level of amino acid sequence conservation between the C. thermoaceticum FTHFS and the published sequences of C. acidiurici FTHFS and the FTHFS domains of the Saccharomyces cerevisiae C1-THF synthases was found. Of the 556 residues shared between the two clostridial sequences, 66.4% are identical. If conservative substitutions are allowed, this percentage rises to 75%. Over 47% of the residues shared between the C. thermoaceticum FTHFS and the yeast C1-THF synthases are identical, 57.4% if conservative substitutions are allowed. Hydrophobicity profiles of the C. acidiurici and C. thermoaceticum enzymes were very similar and did not support the idea that large hydrophobic domains play an important role in thermostabilizing the C. thermoaceticum FTHFS.
KeywordMeSH Terms
Formate-Tetrahydrofolate Ligase
Ligases
16.     ( 1996 )

Domain structure of the prokaryotic selenocysteine-specific elongation factor SelB.

Journal of molecular biology 262 (4)
PMID : 8893853  :   DOI  :   10.1006/jmbi.1996.0525    
Abstract >>
Incorporation of the non-canonical amino acid selenocysteine into proteins requires the activity of the elongation factor SelB which substitutes for the function of EF-Tu in contrast to EF-Tu, SelB binds selenocystylated tRNASec and an mRNA secondary structure adjacent to the UGA selenocysteine codon. To gain information on the domain structure of this specialized translation factor, the selB genes from two bacteria unrelated to Escherichia coli (Clostridium thermoaceticum and Desulfomicrobium baculatum) were cloned and sequenced. The derived amino acid residue sequences were compared to those of SelB from E. coli and Haemophilus influenzae and to EF-Tu sequences. The alignment revealed that SelB contains all three domains characterized for EF-Tu. A fourth, C-terminally located domain shows only limited sequence conservation within the four SelB proteins. To elucidate the function of this C-terminal part a structure-function analysis of SelB from E. coli was performed. It showed that a C-terminal 17 kDa subdomain of the translation factor, when expressed separately, specifically binds the mRNA secondary structure. The recognition motif itself could be reduced to a 17 nucleotide minihelix without loss of binding affinity and specificity. A truncated SelB lacking the mRNA binding domain was still able to interact with selenocysteyl-tRNASec. Expression of the mRNA binding domain alone suppressed selenocysteine insertion in vivo by competing with SelB for its binding site at the mRNA. The results indicate that SelB can be considered as an EF-Tu homolog hooked to the mRNA via its C-terminal domain.
KeywordMeSH Terms
17.     ( 1997 )

Purification and reconstitution into proteoliposomes of the F1F0 ATP synthase from the obligately anaerobic gram-positive bacterium Clostridium thermoautotrophicum.

Journal of bacteriology 179 (5)
PMID : 9045833  :   DOI  :   10.1128/jb.179.5.1714-1720.1997     PMC  :   PMC178886    
Abstract >>
The proton-translocating F1F0 ATP synthase from Clostridium thermoautotrophicum was solubilized from cholate-washed membranes with Zwittergent 3-14 at 58 degrees C and purified in the presence of octylglucoside by sucrose gradient centrifugation and ion-exchange chromatography on a DEAE-5PW column. The purified enzyme hydrolyzed ATP at a rate of 12.6 micromol min(-1) mg(-1) at 58 degrees C and pH 8.5. It was composed of six different polypeptides with molecular masses of 60, 50, 32, 19, 17, and 8 kDa. These were identified as alpha, beta, gamma, delta, epsilon, and c subunits, respectively, as their N-terminal amino acid sequences matched the deduced N-terminal amino acid sequences of the corresponding genes of the atp operon sequenced from Clostridium thermoaceticum (GenBank accession no. U64318), demonstrating the close similarity of the F1F0 complexes from C. thermoaceticum and C. thermoautotrophicum. Four of these subunits, alpha, beta, gamma, and epsilon, constituted the F1-ATPase purified from the latter bacterium. The delta subunit could not be found in the purified F1 although it was present in the F1F0 complex, indicating that the F0 moiety consisted of the delta and the c subunits and lacked the a and b subunits found in many aerobic bacteria. The c subunit was characterized as N,N'-dicyclohexylcarbodiimide reactive. The F1F0 complex of C. thermoautotrophicum consisting of subunits alpha, beta, gamma, delta, epsilon, and c was reconstituted with phospholipids into proteoliposomes which had ATP-Pi exchange, carbonylcyanide p-trifluoromethoxy-phenylhydrazone-stimulated ATPase, and ATP-dependent proton-pumping activities. Immunoblot analyses of the subunits of ATP synthases from C. thermoautotrophicum, C. thermoaceticum, and Escherichia coli revealed antigenic similarities among the F1 subunits from both clostridia and the beta subunit of F1 from E. coli.
KeywordMeSH Terms
Proteolipids
18.     ( 1993 )

Identification of a cysteine involved in the interaction between carbon monoxide dehydrogenase and corrinoid/Fe-S protein from Clostridium thermoaceticum.

FEBS letters 326 (1��3��)
PMID : 8325380  :   DOI  :   10.1016/0014-5793(93)81808-d    
Abstract >>
In Clostridium thermoaceticum, the synthesis of acetyl-CoA from methyl tetrahydrofolate occurs via a series of enzymatic reactions involving methyl transferase, corrinoid/Fe-S protein (corrinoid), carbon monoxide dehydrogenase (CODH) and ferredoxin. We have investigated the possibility of one or more of these proteins existing as multi-enzyme complexes in vivo with higher catalytic activity. A protein complex consisting of CODH and corrinoid was isolated from the cell-free extracts of Clostridium thermoaceticum. The acetyl-CoA synthesis was found to be approximately 1.8-fold higher with the complex than that observed with the isolated protein components. HPLC gel filtration analyses of the native and DTE reduced complex suggested that the CODH:corrinoid complex is held together primarily by an inter disulfide bond. By differential labeling of thiols with [14C]N-ethylmaleimide it was found that Cys-506 of the alpha subunit of CODH was involved in the disulfide linkage with the corrinoid of the complex.
KeywordMeSH Terms
Cysteine
19.     ( 1993 )

Sequence and expression of the gene encoding the corrinoid/iron-sulfur protein from Clostridium thermoaceticum and reconstitution of the recombinant protein to full activity.

The Journal of biological chemistry 268 (8)
PMID : 8449924  :  
Abstract >>
The corrinoid/iron-sulfur protein (C/Fe-SP) from Clostridium thermoaceticum acts as a methyl group carrier in the anaerobic acetyl-CoA pathway of CO and CO2 fixation. Consisting of a small (approximately 33 kDa) and a large (approximately 55 kDa) subunit, the C/Fe-SP contains 1 mol of cobalt in a corrinoid cofactor and 1 mol of [4Fe-4S]2+/1+ cluster/mol of alpha beta dimer. Cobalt is the site of methylation, and the [4Fe-4S] center appears to serve an electron transfer function. The genes encoding both subunits have been cloned previously and are located within a gene cluster that includes other genes required for CO2 fixation by anaerobic bacteria. When the genes encoding the C/Fe-SP were expressed in Escherichia coli, the protein was found to be inactive. We report the amino acid sequences of the large and small subunits of the C/Fe-SP based on the DNA sequences of the cloned genes. The [4Fe-4S] cluster was found to be located in the large subunit. Although the primary structural lattice for cobamide binding resides in the small subunit, both subunits are required for formation of a stable cobamide-binding protein. Based on sequence comparisons with other [4Fe-4S]-containing proteins, 3 of the 4 cysteine residues that serve as ligands to the iron sites in the cluster have been located. The two subunits were independently overexpressed in E. coli to a level of 30-50% of cell protein; however, the resulting protein was inactive, lacked stoichiometric amounts of Fe-S cluster, and lacked cobamide. By combining the recombinant subunits, unfolding them with urea, and refolding in the presence of cobamide, iron, and inorganic sulfide, the resulting C/Fe-SP was found to contain stoichiometric amounts of cobamide and [4Fe-4S] cluster and had spectroscopic and enzymatic properties similar to those of the native protein. We expect that the methods developed here may be used for heterologous overexpression and reconstitution of other complex metalloenzymes. The C/Fe-SP was found to utilize with equal efficiency either vitamin B12 or the natural cofactor 5-methoxybenzimidazolylcobamide as a methyl carrier.
KeywordMeSH Terms
20.     ( 1994 )

The reductive acetyl coenzyme A pathway: sequence and heterologous expression of active methyltetrahydrofolate:corrinoid/iron-sulfur protein methyltransferase from Clostridium thermoaceticum.

Journal of bacteriology 176 (19)
PMID : 7928975  :   DOI  :   10.1128/jb.176.19.6127-6130.1994     PMC  :   PMC196833    
Abstract >>
The methyltransferase (MeTr) from Clostridium thermoaceticum transfers the N5-methyl group of (6S)-methyltetrahydrofolate to the cobalt center of a corrinoid/iron-sulfur protein in the acetyl coenzyme A pathway. MeTr was purified to homogeneity and shown to lack metals. The acsE gene encoding MeTr was sequenced and actively expressed in Escherichia coli at a level of 9% of cell protein. Regions in the sequence of MeTr and the E. coli cobalamin-dependent methionine synthase were found to share significant homology, suggesting that they may represent tetrahydrofolate-binding domains.
KeywordMeSH Terms
21. Elliott  JI, Yang  SS, Ljungdahl  LG, Travis  J, Reilly  CF,     ( 1982 )

Complete amino acid sequence of the 4Fe-4S, thermostable ferredoxin from Clostridium thermoaceticum.

Biochemistry 21 (14)
PMID : 7115670  :   DOI  :   10.1021/bi00257a007    
Abstract >>
The complete amino acid sequence of the 4Fe-4S ferredoxin from the thermophilic bacterium Clostridium thermoaceticum has been determined. The protein is extremely thermostable and is the only known clostridial ferredoxin to contain a single [4Fe-4S] cluster. The sequence totals 63 residues and includes the first tryptophan (Trp-26) reported for a clostridial ferredoxin, and other amino acids not commonly found in clostridial or clostridial-like ferredoxins: methionine (Met-1), histidine (His-33), arginine (Arg-49), and leucine (Leu-9, -19, and -31). Sequence homology to clostridial and other 8Fe-8S ferredoxins is limited to eight to nine residues at the amino-terminal sulfhydryl grouping (Cys-10, -13, -16, and -20) and two to five residues in the carboxyterminal region. This ferredoxin is, thus, sequentially distinct from all known clostridial ferredoxins and from other bacterial ferredoxins in both the 8Fe-8S and 4Fe-4S classes.
KeywordMeSH Terms
22. Roberts  DL, James-Hagstrom  JE, Garvin  DK, Gorst  CM, Runquist  JA, Baur  JR, Haase  FC, Ragsdale  SW,     ( 1989 )

Cloning and expression of the gene cluster encoding key proteins involved in acetyl-CoA synthesis in Clostridium thermoaceticum: CO dehydrogenase, the corrinoid/Fe-S protein, and methyltransferase.

Proceedings of the National Academy of Sciences of the United States of America 86 (1)
PMID : 2911576  :   DOI  :   10.1073/pnas.86.1.32     PMC  :   PMC286397    
Abstract >>
Acetogenic bacteria fix CO or CO2 by a pathway of autotrophic growth called the acetyl-CoA (or Wood) pathway. Key enzymes in the pathway are a methyltransferase, a corrinoid/Fe-S protein, a disulfide reductase, and a carbon monoxide dehydrogenase. This manuscript describes the isolation of the genes that code for the methyltransferase, the two subunits of the corrinoid/Fe-S protein, and the two subunits of carbon monoxide dehydrogenase. These five genes were found to be clustered within an approximately 10-kilobase segment on the Clostridium thermoaceticum genome. The proteins were expressed at up to 5-10% of Escherichia coli cell protein, and isopropyl beta-D-thiogalactopyranoside had no effect on the levels of expression, implying that the C. thermoaceticum inserts contained transcriptional and translational signals that were recognized by E. coli. The methyltransferase is expressed in E. coli in a fully active dimeric form with a specific activity and heat stability similar to the enzyme expressed in C. thermoaceticum. However, both the corrinoid/Fe-S protein and carbon dioxide dehydrogenase, although expressed in high amounts and with identical subunit molecular weights in E. coli, are inactive and less heat stable than are the native enzymes from C. thermoaceticum.
KeywordMeSH Terms
Genes
Genes, Bacterial
Multienzyme Complexes
Multigene Family
23.     ( 2013 )

Isolation of thermophilic acetogens and transformation of them with the pyrF and kan(r) genes.

Bioscience, biotechnology, and biochemistry 77 (2)
PMID : 23391907  :   DOI  :   10.1271/bbb.120720    
Abstract >>
The application of microbial catalysts to syngas from the gasification of lignocellulosic biomass is gaining interest. Acetogens, a group of anaerobic bacteria, can grow autotrophically on gaseous substrates such as hydrogen and carbon dioxide or syngas and produce acetate via the acetyl-CoA pathway. Here, we report the isolation from a soil sample of two thermophilic acetogen strains, Y72 and Y73, that are closely related to Moorella sp. HUC22-1 and M. thermoacetica ATCC39073. The optimal growth temperature and pH for the strains were 60 �XC and 6.0-6.5. Uracil auxotrophy was induced in them by replacing the orotate monophosphate decarboxylase gene (pyrF) with the kanamycin resistant marker (kan(r)). The transformants were isolated by supplementation of the basal medium with 300 mg/L of kanamycin. The transformation efficiency of strains Y72 and Y73 was 20-fold higher than that of strain ATCC39073. Hence these strains are considered possible hosts for thermophilic syngas fermentation.
KeywordMeSH Terms
Genes, Bacterial
24.     ( 1998 )

Bacterial selenocysteine synthase--structural and functional properties.

European journal of biochemistry 254 (3)
PMID : 9688279  :   DOI  :   10.1046/j.1432-1327.1998.2540655.x    
Abstract >>
Selenocysteine synthase from Escherichia coli is a pyridoxal-5'-phosphate-containing enzyme which catalyses the conversion of seryl-tRNA(Sec) into selenocysteyl-tRNA(Sec). Analysis of amino acid sequences indicated that selenocysteine synthase belongs to the alpha/gamma superfamily of pyridoxal-5'-phosphate-dependent enzymes. To identify the lysine residue carrying the prosthetic group, the genes coding for the selenocysteine synthases from Moorella thermoacetica and Desulfomicrobium baculatum were cloned and sequenced and their derived amino acid sequences were aligned with those from E. coli and Haemophilus influenzae. Three lysine residues were found to be conserved; they were mutated into asparagine and one of them, Lys295, was found to be essential for activity. Proteolytic fragmentation of the E. coli enzyme reduced with borohydride, and mass-spectrometric and sequence analysis of the chromophoric peptide proved that Lys295 was modified. Kinetic analysis of the enzyme showed that thiophosphate served as a substrate leading to cysteyl-tRNA(Sec) synthesis, albeit with a 330-fold lower catalytic efficiency. Selenide and, to a much lesser degree, sulfide could also be used by the enzyme but only at much higher concentrations. These data together with the finding that selenophosphate synthetase is highly specific for selenide indicate that the phosphate moiety of selenophosphate provides selenocysteine synthase with the discrimination specificity against sulfur.
KeywordMeSH Terms

331, Shih-Pin Rd., Hsinchu 30062, Taiwan

Phone: +886-3-5223191

E-mail: bcrcweb@firdi.org.tw

web maintainance: +886-3-5223191 ext 593

Copyright © 2018.BCRC All rights reserved.The duplication or use of information and data such as texts or images or any linkage the website at the "bcrc.firdi.org.tw" is only permitted with the indication of the source or with prior approval by the BCRC(Bioresource Collection and Research Center).