BCRC Strain Collection Catalog & Shopping Cart

  Home / BCRC Content / 14443 / 

Return

  Research Article

The information shown in this page was generated using the cross-referenced linkage within public domain database between their strains and BCRC related strains. Usually the information provided from public domain databases varies with different confidences and errors, BCRC provides the related information here at best effort, but BCRC doesn't take the responsibility about the correctness of the information provided here.

1. Rezzonico  F, Smits  TH, Montesinos  E, Frey  JE, Duffy  B,     ( 2009 )

Genotypic comparison of Pantoea agglomerans plant and clinical strains.

BMC microbiology 9 (N/A)
PMID : 19772624  :   DOI  :   10.1186/1471-2180-9-204     PMC  :   PMC2764716    
Abstract >>
Pantoea agglomerans strains are among the most promising biocontrol agents for a variety of bacterial and fungal plant diseases, particularly fire blight of apple and pear. However, commercial registration of P. agglomerans biocontrol products is hampered because this species is currently listed as a biosafety level 2 (BL2) organism due to clinical reports as an opportunistic human pathogen. This study compares plant-origin and clinical strains in a search for discriminating genotypic/phenotypic markers using multi-locus phylogenetic analysis and fluorescent amplified fragment length polymorphisms (fAFLP) fingerprinting. Majority of the clinical isolates from culture collections were found to be improperly designated as P. agglomerans after sequence analysis. The frequent taxonomic rearrangements underwent by the Enterobacter agglomerans/Erwinia herbicola complex may be a major problem in assessing clinical associations within P. agglomerans. In the P. agglomerans sensu stricto (in the stricter sense) group, there was no discrete clustering of clinical/biocontrol strains and no marker was identified that was uniquely associated to clinical strains. A putative biocontrol-specific fAFLP marker was identified only in biocontrol strains. The partial ORF located in this band corresponded to an ABC transporter that was found in all P. agglomerans strains. Taxonomic mischaracterization was identified as a major problem with P. agglomerans, and current techniques removed a majority of clinical strains from this species. Although clear discrimination between P. agglomerans plant and clinical strains was not obtained with phylogenetic analysis, a single marker characteristic of biocontrol strains was identified which may be of use in strain biosafety determinations. In addition, the lack of Koch's postulate fulfilment, rare retention of clinical strains for subsequent confirmation, and the polymicrobial nature of P. agglomerans clinical reports should be considered in biosafety assessment of beneficial strains in this species.
KeywordMeSH Terms
Genotype
2. Völksch  B, Thon  S, Jacobsen  ID, Gube  M,     ( 2009 )

Polyphasic study of plant- and clinic-associated Pantoea agglomerans strains reveals indistinguishable virulence potential.

Infection, genetics and evolution : journal of molecular epidemiology and evolutionary genetics in infectious diseases 9 (6)
PMID : 19800991  :   DOI  :   10.1016/j.meegid.2009.09.016    
Abstract >>
Pantoea species are ubiquitous in nature and occasionally associated with infections caused by contaminated clinical material. Hence, Pantoea agglomerans is considered as an opportunistic pathogen of humans. Since species of the genus Pantoea and closely related species of other Enterobacteriaceae genera are phenotypically very similar, many clinical isolates are misassigned into P. agglomerans based on the use of quick commercial-offered biochemical tests. Our objective was to find markers enabling discrimination between clinical and plant isolates and to assess their virulence potential. We characterized 27 Pantoea strains, including 8 P. agglomerans isolates of clinical, and 11 of plant origin by biochemical tests and genotyping, including analysis of 16S rDNA and gapA gene sequences, and pattern polymorphisms of ITS- and ERIC/REP-DNA. All data showed that no discrete evolution occurred between plant-associated and clinical P. agglomerans isolates. Based on the typing results, five clinical- and five plant-associated P. agglomerans strains representing the majority of clades were tested on a model plant and in embryonated eggs. On soybean plants P. agglomerans strains independent of their origin could develop stable epiphytic populations. Surprisingly, in the embryonated egg model there was no difference of virulence between clinical and vegetable P. agglomerans isolates. However, these strains were significantly less virulent than a phytopathogenic P. ananatis isolate. We suggest that, independent of their origin, all P. agglomerans strains might possess indistinguishable virulence potential.
KeywordMeSH Terms
Pantoea
3. Brady  C, Cleenwerck  I, Venter  S, Vancanneyt  M, Swings  J, Coutinho  T,     ( 2008 )

Phylogeny and identification of Pantoea species associated with plants, humans and the natural environment based on multilocus sequence analysis (MLSA).

Systematic and applied microbiology 31 (6��8��)
PMID : 19008066  :   DOI  :   10.1016/j.syapm.2008.09.004    
Abstract >>
Species belonging to the genus of Pantoea are commonly isolated from plants, humans and the natural environment. The species of the genus are phenotypically closely related, making rapid identification of Pantoea strains to the species level difficult. Multilocus sequence analysis (MLSA) was evaluated as a means for rapid classification and identification of Pantoea strains. Four housekeeping genes, gyrB, rpoB, atpD and infB, were sequenced for strains assigned to the genus. Included in the study were (1) reference strains from the seven currently recognized species of Pantoea, (2) strains belonging to Brenner DNA groups II, IV and V, previously isolated from clinical samples and difficult to identify because of high phenotypic similarity to P. agglomerans or P. ananatis and (3) isolates from diseased Eucalyptus, maize and onion, assigned to the genus on the basis of phenotypic tests. Phylogenetic trees were constructed from the sequences of the four housekeeping genes. The "core"Pantoea species formed a cluster separate from the "Japanese" species which formed a tight cluster that included the genus Tatumella when the tree was based on concatenated sequences of the four genes. The MLSA data further suggested the existence of ten potential novel species, phylogenetically related to the currently recognized Pantoea species and the possible inclusion of Pectobacterium cypripedii in the genus Pantoea. When compared with DNA-DNA hybridization data, a good congruence was observed between both methods, with gyrB sequence data being the most consistent. In conclusion, MLSA of partial nucleotide sequences of the genes gyrB, rpoB, atpD and infB can be used for classification, identification and phylogenetic analyses of Pantoea strains.
KeywordMeSH Terms
Genes, Bacterial
Soil Microbiology
4. Tambong  JT, Xu  R, Kaneza  CA, Nshogozabahizi  JC,     ( 2014 )

An In-depth Analysis of a Multilocus Phylogeny Identifies leuS As a Reliable Phylogenetic Marker for the Genus Pantoea.

Evolutionary bioinformatics online 10 (N/A)
PMID : 25125967  :   DOI  :   10.4137/EBO.S15738     PMC  :   PMC4125426    
Abstract >>
Partial sequences of six core genes (fusA, gyrB, leuS, pyrG, rlpB, and rpoB) of 37 strains of Pantoea species were analyzed in order to obtain a comprehensive view regarding the phylogenetic relationships within the Pantoea genus and compare tree topologies to identify gene(s) for reliable species and subspecies differentiation. All genes used in this study were effective at species-level delineation, but the internal nodes represented conflicting common ancestors in fusA- and pyrG-based phylogenies. Concatenated gene phylogeny gave the expected DNA relatedness, underscoring the significance of a multilocus sequence analysis. Pairwise comparison of topological distances and percent similarities indicated a significant differential influence of individual genes on the concatenated tree topology. leuS- and fusA-inferred phylogenies exhibited, respectively, the lowest (4) and highest (52) topological distances to the concatenated tree. These correlated well with high (96.3%) and low (64.4%) percent similarities of leuS- and fusA-inferred tree topologies to the concatenated tree, respectively. We conclude that the concatenated tree topology is strongly influenced by the gene with the highest number of polymorphic and non-synonymous sites in the absence of significant recombination events.
KeywordMeSH Terms
Pantoea stewartii
leuS
multilocus
phylogeny
topology
Pantoea stewartii
leuS
multilocus
phylogeny
topology
Pantoea stewartii
leuS
multilocus
phylogeny
topology
Pantoea stewartii
leuS
multilocus
phylogeny
topology
Pantoea stewartii
leuS
multilocus
phylogeny
topology

331, Shih-Pin Rd., Hsinchu 30062, Taiwan

Phone: +886-3-5223191

E-mail: bcrcweb@firdi.org.tw

web maintainance: +886-3-5223191 ext 593

Copyright © 2018.BCRC All rights reserved.The duplication or use of information and data such as texts or images or any linkage the website at the "bcrc.firdi.org.tw" is only permitted with the indication of the source or with prior approval by the BCRC(Bioresource Collection and Research Center).