BCRC Strain Collection Catalog & Shopping Cart

  Home / BCRC Content / 14468 / 

Return

  Research Article

The information shown in this page was generated using the cross-referenced linkage within public domain database between their strains and BCRC related strains. Usually the information provided from public domain databases varies with different confidences and errors, BCRC provides the related information here at best effort, but BCRC doesn't take the responsibility about the correctness of the information provided here.

1. Leaphart  AB, Lovell  CR,     ( 2001 )

Recovery and analysis of formyltetrahydrofolate synthetase gene sequences from natural populations of acetogenic bacteria.

Applied and environmental microbiology 67 (3)
PMID : 11229939  :   DOI  :   10.1128/AEM.67.3.1392-1395.2001     PMC  :   PMC92742    
Abstract >>
Primers for PCR amplification of partial (1,102 of 1,680 bp) formyltetrahydrofolate synthetase (FTHFS) gene sequences were developed and tested. Partial FTHFS sequences were successfully amplified from DNA from pure cultures of known acetogens, from other FTHFS-producing organisms, from the roots of the smooth cordgrass, Spartina alterniflora, and from fresh horse manure. The amplimers recovered were cloned, their nucleotide sequences were determined, and their translated amino acid sequences were used to construct phylogenetic trees. We found that FTHFS sequences from homoacetogens formed a monophyletic cluster that did not contain sequences from nonhomoacetogens and that FTHFS sequences appear to be informative regarding major physiological features of FTHFS-producing organisms.
KeywordMeSH Terms
Sequence Analysis, DNA
2. Gagen  EJ, Denman  SE, Padmanabha  J, Zadbuke  S, Al Jassim  R, Morrison  M, McSweeney  CS,     ( 2010 )

Functional gene analysis suggests different acetogen populations in the bovine rumen and tammar wallaby forestomach.

Applied and environmental microbiology 76 (23)
PMID : 20889794  :   DOI  :   10.1128/AEM.01679-10     PMC  :   PMC2988603    
Abstract >>
Reductive acetogenesis via the acetyl coenzyme A (acetyl-CoA) pathway is an alternative hydrogen sink to methanogenesis in the rumen. Functional gene-based analysis is the ideal approach for investigating organisms capable of this metabolism (acetogens). However, existing tools targeting the formyltetrahydrofolate synthetase gene (fhs) are compromised by lack of specificity due to the involvement of formyltetrahydrofolate synthetase (FTHFS) in other pathways. Acetyl-CoA synthase (ACS) is unique to the acetyl-CoA pathway and, in the present study, acetyl-CoA synthase genes (acsB) were recovered from a range of acetogens to facilitate the design of acsB-specific PCR primers. fhs and acsB libraries were used to examine acetogen diversity in the bovine rumen and forestomach of the tammar wallaby (Macropus eugenii), a native Australian marsupial demonstrating foregut fermentation analogous to rumen fermentation but resulting in lower methane emissions. Novel, deduced amino acid sequences of acsB and fhs affiliated with the Lachnospiraceae in both ecosystems and the Ruminococcaeae/Blautia group in the rumen. FTHFS sequences that probably originated from nonacetogens were identified by low "homoacetogen similarity" scores based on analysis of FTHFS residues, and comprised a large proportion of FTHFS sequences from the tammar wallaby forestomach. A diversity of FTHFS and ACS sequences in both ecosystems clustered between the Lachnospiraceae and Clostridiaceae acetogens but without close sequences from cultured isolates. These sequences probably originated from novel acetogens. The community structures of the acsB and fhs libraries from the rumen and the tammar wallaby forestomach were different (LIBSHUFF, P < 0.001), and these differences may have significance for overall hydrogenotrophy in both ecosystems.
KeywordMeSH Terms
Biodiversity

331, Shih-Pin Rd., Hsinchu 30062, Taiwan

Phone: +886-3-5223191

E-mail: bcrcweb@firdi.org.tw

web maintainance: +886-3-5223191 ext 593

Copyright © 2018.BCRC All rights reserved.The duplication or use of information and data such as texts or images or any linkage the website at the "bcrc.firdi.org.tw" is only permitted with the indication of the source or with prior approval by the BCRC(Bioresource Collection and Research Center).