BCRC Strain Collection Catalog & Shopping Cart

  Home / BCRC Content / 14628 / 

Return

  Research Article

The information shown in this page was generated using the cross-referenced linkage within public domain database between their strains and BCRC related strains. Usually the information provided from public domain databases varies with different confidences and errors, BCRC provides the related information here at best effort, but BCRC doesn't take the responsibility about the correctness of the information provided here.

1. Chavagnat  F, Haueter  M, Jimeno  J, Casey  MG,     ( 2002 )

Comparison of partial tuf gene sequences for the identification of lactobacilli.

FEMS microbiology letters 217 (2)
PMID : 12480101  :   DOI  :   10.1111/j.1574-6968.2002.tb11472.x    
Abstract >>
Comparative analysis of partial tuf sequences was evaluated for the identification and differentiation of lactobacilli. Comparison of the amino acid sequences allowed differentiation between species and also between the subspecies of Lactobacillus delbrueckii. The nucleotide sequence comparison allowed differentiation between other subspecies and between some strains. Lactobacilli from several collections and isolates from dairy samples were clearly identified by comparison of short tuf sequences with those of the type strains. In evaluating the taxonomy of the Lactobacillus casei-related taxa, different tuf amino acid signatures are in favour of a classification into three distinct species. The type strain designation for the L. casei species is discussed.
KeywordMeSH Terms
Bacterial Proteins
Genes, Bacterial
2. Felis  GE, Dellaglio  F, Mizzi  L, Torriani  S,     ( 2001 )

Comparative sequence analysis of a recA gene fragment brings new evidence for a change in the taxonomy of the Lactobacillus casei group.

International journal of systematic and evolutionary microbiology 51 (Pt 6)
PMID : 11760954  :   DOI  :   10.1099/00207713-51-6-2113    
Abstract >>
The taxonomic positions of species of the Lactobacillus casei group have been evaluated by sequencing and phylogenetic analysis of a 277 bp recA gene fragment. High sequence similarity between strain ATCC 393T, currently designated as the type strain of L. casei, and the type strain of Lactobacillus zeae, LMG 17315T, has been established, while L. casei ATCC 334 and Lactobacillus paracasei NCDO 151T form a single phylogenetic group. The taxonomic status of species and strains at issue is discussed.
KeywordMeSH Terms
Sequence Analysis, DNA
3. Huang  CH, Lee  FL,     ( 2011 )

The dnaK gene as a molecular marker for the classification and discrimination of the Lactobacillus casei group.

Antonie van Leeuwenhoek 99 (2)
PMID : 20700765  :   DOI  :   10.1007/s10482-010-9493-6    
Abstract >>
It is hard to accurately identify specific species of the Lactobacillus casei group using phenotypic techniques alone. Some strains of this species group are considered to be probiotic and are widely applied in the food industry. In this study, we compared the use of two phylogenetic markers, the 16S rRNA and dnaK genes, for species discrimination of the members of the L. casei group using sequencing and RFLP. The results showed that L. casei, Lactobacillus paracasei, Lactobacillus zeae and Lactobacillus rhamnosus could be clearly distinguished based on the dnaK gene. The average sequence similarity for the dnaK gene (87.8%) among type strains was significantly less than that of the 16S rRNA sequence (99.1%). Therefore, the dnaK gene can be proposed as an additional molecular phylogenetic marker for L. casei that provides higher resolution than 16S rRNA. Species-specific RFLP profiles of the Lactobacillus strains were obtained with the enzyme ApoI. Our data indicate that the phylogenetic relationships between these strains are easily resolved using sequencing of the dnaK gene or RFLP assays.
KeywordMeSH Terms
4. Naser  SM, Dawyndt  P, Hoste  B, Gevers  D, Vandemeulebroecke  K, Cleenwerck  I, Vancanneyt  M, Swings  J,     ( 2007 )

Identification of lactobacilli by pheS and rpoA gene sequence analyses.

International journal of systematic and evolutionary microbiology 57 (Pt 12)
PMID : 18048724  :   DOI  :   10.1099/ijs.0.64711-0    
Abstract >>
The aim of this study was to evaluate the use of the phenylalanyl-tRNA synthase alpha subunit (pheS) and the RNA polymerase alpha subunit (rpoA) partial gene sequences for species identification of members of the genus Lactobacillus. Two hundred and one strains representing the 98 species and 17 subspecies were examined. The pheS gene sequence analysis provided an interspecies gap, which in most cases exceeded 10 % divergence, and an intraspecies variation of up to 3 %. The rpoA gene sequences revealed a somewhat lower resolution, with an interspecies gap normally exceeding 5 % and an intraspecies variation of up to 2 %. The combined use of pheS and rpoA gene sequences offers a reliable identification system for nearly all species of the genus Lactobacillus. The pheS and rpoA gene sequences provide a powerful tool for the detection of potential novel Lactobacillus species and synonymous taxa. In conclusion, the pheS and rpoA gene sequences can be used as alternative genomic markers to 16S rRNA gene sequences and have a higher discriminatory power for reliable identification of species of the genus Lactobacillus.
KeywordMeSH Terms

331, Shih-Pin Rd., Hsinchu 30062, Taiwan

Phone: +886-3-5223191

E-mail: bcrcweb@firdi.org.tw

web maintainance: +886-3-5223191 ext 593

Copyright © 2018.BCRC All rights reserved.The duplication or use of information and data such as texts or images or any linkage the website at the "bcrc.firdi.org.tw" is only permitted with the indication of the source or with prior approval by the BCRC(Bioresource Collection and Research Center).