BCRC Strain Collection Catalog & Shopping Cart

  Home / BCRC Content / 14667 / 

Return

  Research Article

The information shown in this page was generated using the cross-referenced linkage within public domain database between their strains and BCRC related strains. Usually the information provided from public domain databases varies with different confidences and errors, BCRC provides the related information here at best effort, but BCRC doesn't take the responsibility about the correctness of the information provided here.

1. Requena  T, Burton  J, Matsuki  T, Munro  K, Simon  MA, Tanaka  R, Watanabe  K, Tannock  GW,     ( 2002 )

Identification, detection, and enumeration of human bifidobacterium species by PCR targeting the transaldolase gene.

Applied and environmental microbiology 68 (5)
PMID : 11976117  :   DOI  :   10.1128/aem.68.5.2420-2427.2002     PMC  :   PMC127544    
Abstract >>
Methods that enabled the identification, detection, and enumeration of Bifidobacterium species by PCR targeting the transaldolase gene were tested. Bifidobacterial species isolated from the feces of human adults and babies were identified by PCR amplification of a 301-bp transaldolase gene sequence and comparison of the relative migrations of the DNA fragments in denaturing gradient gel electrophoresis (DGGE). Two subtypes of Bifidobacterium longum, five subtypes of Bifidobacterium adolescentis, and two subtypes of Bifidobacterium pseudocatenulatum could be differentiated using PCR-DGGE. Bifidobacterium angulatum and B. catenulatum type cultures could not be differentiated from each other. Bifidobacterial species were also detected directly in fecal samples by this combination of PCR and DGGE. The number of species detected was less than that detected by PCR using species-specific primers targeting 16S ribosomal DNA (rDNA). Real-time quantitative PCR targeting a 110-bp transaldolase gene sequence was used to enumerate bifidobacteria in fecal samples. Real-time quantitative PCR measurements of bifidobacteria in fecal samples from adults correlated well with results obtained by culture when either a 16S rDNA sequence or the transaldolase gene sequence was targeted. In the case of samples from infants, 16S rDNA-targeted PCR was superior to PCR targeting the transaldolase gene for the quantification of bifidobacterial populations.
KeywordMeSH Terms
2. Jian  W, Zhu  L, Dong  X,     ( 2001 )

New approach to phylogenetic analysis of the genus Bifidobacterium based on partial HSP60 gene sequences.

International journal of systematic and evolutionary microbiology 51 (Pt 5)
PMID : 11594590  :   DOI  :   10.1099/00207713-51-5-1633    
Abstract >>
The partial 60 kDa heat-shock protein (HSP60) genes of 36 Bifidobacterium strains representing 30 different Bifidobacterium species and subspecies and of the type strain of Gardnerella vaginalis were cloned and sequenced using a pair of universal degenerate HSP60 PCR primers. The HSP60 DNA sequence similarities were determined for the taxa at various ranks as follows: 99.4-100% within the same species, 96% at the subspecies level, and 73-96% (mean 85%) at the interspecies level (and 98% in the case of two groups of closely related species, Bifidobacterium animalis and Bifidobacterium lactis, Bifidobacterium infantis, Bifidobacterium longum and Bifidobacterium suis, whose 165 rRNA sequence similarities are all above 99%). The HSP60 DNA sequence similarities between different Bifidobacterium species and G. vaginalis, a closely related bacterium according to 16S rRNA analysis, ranged from 71 to 79% (mean 75%). Although the topology of the phylogenetic tree constructed using the HSP60 sequences determined was basically similar to that for 16S rRNA, it seemed to be more clear-cut for species delineation, and the clustering was better correlated with the DNA base composition (mol% G+C) than that of the 16S rRNA tree. In the HSP60 phylogenetic tree, all of the high-G+C (55-67 mol%) bifidobacteria were grouped into one cluster, whereas the low-G+C species Bifidobacterium inopinatum (45 mol %) formed a separate cluster with G. vaginalis (42 mol%) and Bifidobacterium denticolens (55 mol%); a Bifidobacterium species of intermediate G+C content formed another cluster between the two. This study demonstrates that the highly conserved and ubiquitous HSP60 gene is an accurate and convenient tool for phylogenetic analysis of the genus Bifidobacterium.
KeywordMeSH Terms
Phylogeny
Sequence Analysis, DNA
3. Vaugien  L, Prevots  F, Roques  C,     ( 2002 )

Bifidobacteria identification based on 16S rRNA and pyruvate kinase partial gene sequence analysis.

Anaerobe 8 (6)
PMID : 16887679  :   DOI  :   10.1016/S1075-9964(03)00025-8    
Abstract >>
The lack of a simple and rapid identification system for Bifidobacterium species makes them difficult to use in industrial applications. To obtain valuable discriminating factor, we studied different strains, and human isolates by two molecular taxonomy methods. First method was based on chrono-differentiation. A metabolic gene (pyruvate kinase) was chosen to be used as a systematic discriminating factor. A comparison of about 40 pyruvate kinase protein sequences allowed us to synthesize two oligonucleotides that were able to amplify a fragment of this corresponding gene in our strains. Based on these partial pyruvate kinase gene sequences, several clusters could be identified. The second method used in this study was based on 16S rRNA sequences analysis. We compared sequences present in GenBank database, and this allowed to separate bifidobacteria species into different clusters. They were different from those obtained with partial pyruvate kinase gene sequences analysis. So, by combining both methods, we were able to identify our isolates, when only 10% of them could be strictly identified using the 16S rRNA method. Moreover, pyruvate kinase analysis allowed to differentiate very ambivalent groups such as B. animalis/B. lactis or B. infantis/B. longum, but created different clusters for B. infantis species group, questioning on the homogeneity of this species.
KeywordMeSH Terms
4. Ventura  M, Canchaya  C, Bernini  V, Del Casale  A, Dellaglio  F, Neviani  E, Fitzgerald  GF, van Sinderen  D,     ( 2005 )

Genetic characterization of the Bifidobacterium breve UCC 2003 hrcA locus.

Applied and environmental microbiology 71 (12)
PMID : 16332909  :   DOI  :   10.1128/AEM.71.12.8998-9007.2005     PMC  :   PMC1317471    
Abstract >>
The bacterial heat shock response is characterized by the elevated expression of a number of chaperone complexes and transcriptional regulators, including the DnaJ and the HrcA proteins. Genome analysis of Bifidobacterium breve UCC 2003 revealed a second copy of a dnaJ gene, named dnaJ2, which is flanked by the hrcA gene in a genetic constellation that appears to be unique to the actinobacteria. Phylogenetic analysis using 53 bacterial dnaJ sequences, including both dnaJ1 and dnaJ2 sequences, suggests that these genes have followed a different evolutionary development. Furthermore, the B. breve UCC 2003 dnaJ2 gene seems to be regulated in a manner that is different from that of the previously characterized dnaJ1 gene. The dnaJ2 gene, which was shown to be part of a 2.3-kb bicistronic operon with hrcA, was induced by osmotic shock but not significantly by heat stress. This induction pattern is unlike those of other characterized dnaJ genes and may be indicative of a unique stress adaptation strategy by this commensal microorganism.
KeywordMeSH Terms
5. Ventura  M, Zink  R, Fitzgerald  GF, van Sinderen  D,     ( 2005 )

Gene structure and transcriptional organization of the dnaK operon of Bifidobacterium breve UCC 2003 and application of the operon in bifidobacterial tracing.

Applied and environmental microbiology 71 (1)
PMID : 15640225  :   DOI  :   10.1128/AEM.71.1.487-500.2005     PMC  :   PMC544267    
Abstract >>
The incorporation and delivery of bifidobacterial strains as probiotic components in many food preparations expose these microorganisms to a multitude of environmental insults, including heat and osmotic stresses. We characterized the dnaK gene region of Bifidobacterium breve UCC 2003. Sequence analysis of the dnaK locus revealed four genes with the organization dnaK-grpE-dnaJ-ORF1, whose deduced protein products display significant similarity to corresponding chaperones found in other bacteria. Northern hybridization and real-time LightCycler PCR analysis revealed that the transcription of the dnaK operon was strongly induced by osmotic shock but was not induced significantly by heat stress. A 4.4-kb polycistronic mRNA, which represented the transcript of the complete dnaK gene region, was detected. Many other small transcripts, which were assumed to have resulted from intensive processing or degradation of this polycistronic mRNA, were identified. The transcription start site of the dnaK operon was determined by primer extension. Phylogenetic analysis of the available bifidobacterial grpE and dnaK genes suggested that the evolutionary development of these genes has been similar. The phylogeny derived from the various bifidobacterial grpE and dnaK sequences is consistent with that derived from 16S rRNA. The use of these genes in bifidobacterial species as an alternative or complement to the 16S rRNA gene marker provides sequence signatures that allow a high level of discrimination between closely related species of this genus.
KeywordMeSH Terms
Adenosine Triphosphatases
Bacterial Proteins
Gene Expression Regulation, Bacterial
Molecular Chaperones
Operon
6. Ventura  M, Canchaya  C, Zink  R, Fitzgerald  GF, van Sinderen  D,     ( 2004 )

Characterization of the groEL and groES loci in Bifidobacterium breve UCC 2003: genetic, transcriptional, and phylogenetic analyses.

Applied and environmental microbiology 70 (10)
PMID : 15466567  :   DOI  :   10.1128/AEM.70.10.6197-6209.2004     PMC  :   PMC522111    
Abstract >>
The bacterial heat shock response is characterized by the elevated expression of a number of chaperone complexes, including the GroEL and GroES proteins. The groES and groEL genes are highly conserved among eubacteria and are typically arranged as an operon. Genome analysis of Bifidobacterium breve UCC 2003 revealed that the groES and groEL genes are located in different chromosomal regions. The heat inducibility of the groEL and groES genes of B. breve UCC 2003 was verified by slot blot analysis. Northern blot analyses showed that the cspA gene is cotranscribed with the groEL gene, while the groES gene is transcribed as a monocistronic unit. The transcription initiation sites of these two mRNAs were determined by primer extension. Sequence and transcriptional analyses of the region flanking the groEL and groES genes of various bifidobacteria revealed similar groEL-cspA and groES gene units, suggesting a novel genetic organization of these chaperones. Phylogenetic analysis of the available bifidobacterial groES and groEL genes suggested that these genes evolved differently. Discrepancies in the phylogenetic positioning of groES-based trees make this gene an unreliable molecular marker. On the other hand, the bifidobacterial groEL gene sequences can be used as an alternative to current methods for tracing Bifidobacterium species, particularly because they allow a high level of discrimination between closely related species of this genus.
KeywordMeSH Terms
Genes, Bacterial
7. Ventura  M, Canchaya  C, van Sinderen  D, Fitzgerald  GF, Zink  R,     ( 2004 )

Bifidobacterium lactis DSM 10140: identification of the atp (atpBEFHAGDC) operon and analysis of its genetic structure, characteristics, and phylogeny.

Applied and environmental microbiology 70 (5)
PMID : 15128574  :   DOI  :   10.1128/aem.70.5.3110-3121.2004     PMC  :   PMC404453    
Abstract >>
The atp operon is highly conserved among eubacteria, and it has been considered a molecular marker as an alternative to the 16S rRNA gene. PCR primers were designed from the consensus sequences of the atpD gene to amplify partial atpD sequences from 12 Bifidobacterium species and nine Lactobacillus species. All PCR products were sequenced and aligned with other atpD sequences retrieved from public databases. Genes encoding the subunits of the F(1)F(0)-ATPase of Bifidobacterium lactis DSM 10140 (atpBEFHAGDC) were cloned and sequenced. The deduced amino acid sequences of these subunits showed significant homology with the sequences of other organisms. We identified specific sequence signatures for the genus Bifidobacterium and for the closely related taxa Bifidobacterium lactis and Bifidobacterium animalis and Lactobacillus gasseri and Lactobacillus johnsonii, which could provide an alternative to current methods for identification of lactic acid bacterial species. Northern blot analysis showed that there was a transcript at approximately 7.3 kb, which corresponded to the size of the atp operon, and a transcript at 4.5 kb, which corresponded to the atpC, atpD, atpG, and atpA genes. The transcription initiation sites of these two mRNAs were mapped by primer extension, and the results revealed no consensus promoter sequences. Phylogenetic analysis of the atpD genes demonstrated that the Lactobacillus atpD gene clustered with the genera Listeria, Lactococcus, Streptococcus, and Enterococcus and that the higher G+C content and highly biased codon usage with respect to the genome average support the hypothesis that there was probably horizontal gene transfer. The acid inducibility of the atp operon of B. lactis DSM 10140 was verified by slot blot hybridization by using RNA isolated from acid-treated cultures of B. lactis DSM 10140. The rapid increase in the level of atp operon transcripts upon exposure to low pH suggested that the ATPase complex of B. lactis DSM 10140 was regulated at the level of transcription and not at the enzyme assembly step.
KeywordMeSH Terms
Operon
8. Ventura  M, Canchaya  C, Meylan  V, Klaenhammer  TR, Zink  R,     ( 2003 )

Analysis, characterization, and loci of the tuf genes in lactobacillus and bifidobacterium species and their direct application for species identification.

Applied and environmental microbiology 69 (11)
PMID : 14602655  :   DOI  :   10.1128/aem.69.11.6908-6922.2003     PMC  :   PMC262312    
Abstract >>
We analyzed the tuf gene, encoding elongation factor Tu, from 33 strains representing 17 Lactobacillus species and 8 Bifidobacterium species. The tuf sequences were aligned and used to infer phylogenesis among species of lactobacilli and bifidobacteria. We demonstrated that the synonymous substitution affecting this gene renders elongation factor Tu a reliable molecular clock for investigating evolutionary distances of lactobacilli and bifidobacteria. In fact, the phylogeny generated by these tuf sequences is consistent with that derived from 16S rRNA analysis. The investigation of a multiple alignment of tuf sequences revealed regions conserved among strains belonging to the same species but distinct from those of other species. PCR primers complementary to these regions allowed species-specific identification of closely related species, such as Lactobacillus casei group members. These tuf gene-based assays developed in this study provide an alternative to present methods for the identification for lactic acid bacterial species. Since a variable number of tuf genes have been described for bacteria, the presence of multiple genes was examined. Southern analysis revealed one tuf gene in the genomes of lactobacilli and bifidobacteria, but the tuf gene was arranged differently in the genomes of these two taxa. Our results revealed that the tuf gene in bifidobacteria is flanked by the same gene constellation as the str operon, as originally reported for Escherichia coli. In contrast, bioinformatic and transcriptional analyses of the DNA region flanking the tuf gene in four Lactobacillus species indicated the same four-gene unit and suggested a novel tuf operon specific for the genus Lactobacillus.
KeywordMeSH Terms
9.     ( 2013 )

Genetic diversity of bile salt hydrolases among human intestinal bifidobacteria.

Current microbiology 67 (3)
PMID : 23591474  :   DOI  :   10.1007/s00284-013-0362-1     PMC  :   PMC3722454    
Abstract >>
This study analyzes the application of degenerative primers for the screening of bile salt hydrolase-encoding genes (bsh) in various intestinal bifidobacteria. In the first stage, the design and evaluation of the universal PCR primers for amplifying the partial coding sequence of bile salt hydrolase in bifidobacteria were performed. The amplified bsh gene fragments were sequenced and the obtained sequences were compared to the bsh genes present in GenBank. The determined results showed the utility of the designed PCR primers for the amplification of partial gene encoding bile salt hydrolase in different intestinal bifidobacteria. Moreover, sequence analysis revealed that bile salt hydrolase-encoding genes may be used as valuable molecular markers for phylogenetic studies and identification of even closely related members of the genus Bifidobacterium.
KeywordMeSH Terms
Genetic Variation

331, Shih-Pin Rd., Hsinchu 30062, Taiwan

Phone: +886-3-5223191

E-mail: bcrcweb@firdi.org.tw

web maintainance: +886-3-5223191 ext 593

Copyright © 2018.BCRC All rights reserved.The duplication or use of information and data such as texts or images or any linkage the website at the "bcrc.firdi.org.tw" is only permitted with the indication of the source or with prior approval by the BCRC(Bioresource Collection and Research Center).