BCRC Strain Collection Catalog & Shopping Cart

  Home / BCRC Content / 14819 / 

Return

  Research Article

The information shown in this page was generated using the cross-referenced linkage within public domain database between their strains and BCRC related strains. Usually the information provided from public domain databases varies with different confidences and errors, BCRC provides the related information here at best effort, but BCRC doesn't take the responsibility about the correctness of the information provided here.

1. Fowell  SL, Lilley  KS, Jones  D, Maxwell  A,     ( 1992 )

GroEL proteins from three Pseudomonas species.

Molecular microbiology 6 (11)
PMID : 1352616  :   DOI  :   10.1111/j.1365-2958.1992.tb00880.x    
Abstract >>
N/A
KeywordMeSH Terms
2. Hoffmann  D, Kleinsteuber  S, Müller  RH, Babel  W,     ( 2003 )

A transposon encoding the complete 2,4-dichlorophenoxyacetic acid degradation pathway in the alkalitolerant strain Delftia acidovorans P4a.

Microbiology (Reading, England) 149 (Pt 9)
PMID : 12949179  :   DOI  :   10.1099/mic.0.26260-0    
Abstract >>
The bacterial strain Delftia acidovorans P4a, isolated from an extreme environment (heavily contaminated with organochlorines, highly alkaline conditions in an aqueous environment), was found to mineralize 2,4-dichlorophenoxyacetic acid (2,4-D) and 2-methyl-4-chlorophenoxyacetic acid under alkaline conditions. Screening a genomic DNA library of the alkalitolerant strain for 2,4-D genes revealed the presence of the two 2,4-D gene clusters tfdCDEF and tfdC(II)E(II)BKA, tfdR genes being located in the vicinity of each tfd gene cluster. The results showed that the putative genes of the complete 2,4-D degradation pathway are organized in a single genomic unit. Sequence similarities to homologous gene clusters indicate that the individual tfd elements of strain P4a do not share a common origin, but were brought together by recombination events. The entire region is flanked by insertion elements of the IS1071 and IS1380 families, forming a transposon-like structure of about 30 kb, of which 28.4 kb were analysed. This element was shown to be located on the bacterial chromosome. The present study provides the first reported case of a chromosomally located catabolic transposon which carries the genes for the complete 2,4-D degradation pathway.
KeywordMeSH Terms
3. Westendorf  A, Benndorf  D, Müller  RH, Babel  W,     ( 2002 )

The two enantiospecific dichlorprop/alpha-ketoglutarate-dioxygenases from Delftia acidovorans MC1--protein and sequence data of RdpA and SdpA.

Microbiological research 157 (4)
PMID : 12501996  :  
Abstract >>
Two alpha-ketoglutarate-dependent dioxygenases carrying enantiospecific activity for the etherolytic cleavage of racemic phenoxypropionate herbicides [(RS)-2-(2,4-dichlorophenoxy)propionate and (RS)-2-(4-chloro-2-methylphenoxy)propionate] from Delftia acidovorans MC1 were characterized with respect to protein and sequence data. The (S)-phenoxypropionate/alpha-ketoglutarate-dioxygenase (SdpA) appeared as a monomeric enzyme with a molecular weight of 32 kDa in the presence of SDS. N-terminal sequences revealed relationship to alpha-ketoglutarate-dependent taurine dioxygenase (TauD) and to 2,4-dichlorophenoxyacetate/alpha-ketoglutarate-dioxygenase (TfdA). The (R)-phenoxypropionate/alpha-ketoglutarate-dioxygenase (RdpA) referred to 36 kDa in the presence of SDS and to 108 kDa under native conditions. Internal sequences of fragments obtained after digestion made evident relationship to TfdA and TauD. Two-dimensional electrophoretic separation resulted in the resolution of up to 3 individual spots with almost identical molecular weights but different isoelectric points with both RdpA and SdpA. The structural differences of these isoenzyme forms are not yet clear.
KeywordMeSH Terms
4. Tehara  SK, Keasling  JD,     ( 2003 )

Gene Cloning, purification, and characterization of a phosphodiesterase from Delftia acidovorans.

Applied and environmental microbiology 69 (1)
PMID : 12514034  :   DOI  :   10.1128/aem.69.1.504-508.2003     PMC  :   PMC152426    
Abstract >>
A novel phosphodiesterase (PdeA) was purified from Delftia acidovorans, the gene encoding the enzyme was cloned and expressed in Escherichia coli, and the recombinant enzyme was purified to apparent homogeneity and characterized. PdeA is an 85-kDa trimer that exhibits maximal activity at 65 degrees C and pH 10 even though it was isolated from a mesophilic bacterium. Although PdeA exhibited both mono- and diesterase activity, it was most active on the phosphodiester bis(p-nitrophenyl)phosphate with a K(m) of 2.9 +/- 0.1 mM and a k(cat) of 879 +/- 73 min(-1). The enzyme showed sequence similarity to cyclic AMP (cAMP) phosphodiesterase and cyclic nucleotide phosphodiesterases and exhibited activity on cAMP in vivo when the gene was expressed in E. coli. The IS1071 transposon insertion sequence was found downstream of pdeA.
KeywordMeSH Terms
Cloning, Molecular
5. Benndorf  D, Babel  W,     ( 2002 )

Assimilatory detoxification of herbicides by Delftia acidovorans MC1: induction of two chlorocatechol 1,2-dioxygenases as a response to chemostress.

Microbiology (Reading, England) 148 (Pt 9)
PMID : 12213933  :   DOI  :   10.1099/00221287-148-9-2883    
Abstract >>
Proteome analysis of bacteria that can detoxify harmful organic compounds enables the discovery of enzymes involved in the biodegradation of these substances and proteins that protect the cell against poisoning. Exposure of Delftia acidovorans MC1 to 2,4-dichlorophenoxypropionic acid and its metabolites 2,4-dichlorophenol and 3,5-dichlorocatechol during growth on pyruvate as a source of carbon and energy induced several proteins. Contrary to the general hypothesis that lipophilic or reactive compounds induce heat shock or oxidative stress proteins, no induction of the GroEL, DnaK and AhpC proteins that were used as markers for the induction of heat shock and oxidative stress responses was observed. However, two chlorocatechol1,2-dioxygenases, identified by amino terminal sequence analysis, were induced. Both enzymes catalyse the conversion of 3,5-dichlorocatechol to 2,4-dichloro-cis,cis-muconate indicating that biodegradation is a major mechanism of resistance in the detoxifying bacterium D. acidovorans MC1.
KeywordMeSH Terms
Dioxygenases
Escherichia coli Proteins
6. Plaggenborg  R, Steinbüchel  A, Priefert  H,     ( 2001 )

The coenzyme A-dependent, non-beta-oxidation pathway and not direct deacetylation is the major route for ferulic acid degradation in Delftia acidovorans.

FEMS microbiology letters 205 (1)
PMID : 11728709  :   DOI  :   10.1111/j.1574-6968.2001.tb10918.x    
Abstract >>
The gene loci fcs and ech, encoding feruloyl-CoA synthetase and enoyl-CoA hydratase/aldolase, respectively, are involved in the ferulic acid catabolism in Delftia acidovorans. The amino acid sequence deduced from ech exhibited 51% identity to the enoyl-CoA hydratase/aldolase from Pseudomonas sp. strain HR199, indicating that the enzyme from D. acidovorans represents a new lineage of this protein. The genes fcs and ech were expressed in Escherichia coli enabling the recombinant strain to transform ferulic acid to vanillin as revealed by photometric and HPLC analysis. An fcs deficient mutant of D. acidovorans was unable to grow on ferulic acid. The obtained data suggest that in contrast to a previous publication the biotechnologically interesting direct non-oxidative deacetylation mechanism of ferulic acid cleavage is not realized in D. acidovorans. Instead, ferulic acid degradation in D. acidovorans proceeds via a coenzyme A-dependent non-beta-oxidative pathway.
KeywordMeSH Terms
7. Sota  M, Endo  M, Nitta  K, Kawasaki  H, Tsuda  M,     ( 2002 )

Characterization of a class II defective transposon carrying two haloacetate dehalogenase genes from Delftia acidovorans plasmid pUO1.

Applied and environmental microbiology 68 (5)
PMID : 11976102  :   DOI  :   10.1128/aem.68.5.2307-2315.2002     PMC  :   PMC127583    
Abstract >>
The two haloacetate dehalogenase genes, dehH1 and dehH2, on the 65-kb plasmid pUO1 from Delftia acidovorans strain B were found to be located on transposable elements. The dehH2 gene was carried on an 8.9-kb class I composite transposon (TnHad1) that was flanked by two directly repeated copies of IS1071, IS1071L and IS1071R. The dehH1 gene was also flanked by IS1071L and a truncated version of IS1071 (IS1071N). TnHad1, dehH1, and IS1071N were located on a 15.6-kb class II transposon (TnHad2) whose terminal inverted repeats and res site showed high homology with those of the Tn21-related transposons. TnHad2 was defective in transposition because of its lacking the transposase and resolvase genes. TnHad2 could transpose when the Tn21-encoded transposase and resolvase were supplied in trans. These results demonstrated that Tn Had2 is a defective Tn21-related transposon carrying another class I catabolic transposon.
KeywordMeSH Terms
Transposon Resolvases
8. Boon  N, Goris  J, De Vos  P, Verstraete  W, Top  EM,     ( 2001 )

Genetic diversity among 3-chloroaniline- and aniline-degrading strains of the Comamonadaceae.

Applied and environmental microbiology 67 (3)
PMID : 11229899  :   DOI  :   10.1128/AEM.67.3.1107-1115.2001     PMC  :   PMC92702    
Abstract >>
We examined the diversity of the plasmids and of the gene tdnQ, involved in the oxidative deamination of aniline, in five bacterial strains that are able to metabolize both aniline and 3-chloroaniline (3-CA). Three strains have been described and identified previously, i.e., Comamonas testosteroni I2 and Delftia acidovorans CA28 and BN3.1. Strains LME1 and B8c were isolated in this study from linuron-treated soil and from a wastewater treatment plant, respectively, and were both identified as D. acidovorans. Both Delftia and Comamonas belong to the family Comamonadaceae. All five strains possess a large plasmid of ca. 100 kb, but the plasmids from only four strains could be transferred to a recipient strain by selection on aniline or 3-CA as a sole source of carbon and/or nitrogen. Plasmid transfer experiments and Southern hybridization revealed that the plasmid of strain I2 was responsible for total aniline but not 3-CA degradation, while the plasmids of strains LME1 and B8c were responsible only for the oxidative deamination of aniline. Several transconjugant clones that had received the plasmid from strain CA28 showed different degradative capacities: all transconjugants could use aniline as a nitrogen source, while only some of the transconjugants could deaminate 3-CA. For all four plasmids, the IS1071 insertion sequence of Tn5271 was found to be located on a 1.4-kb restriction fragment, which also hybridized with the tdnQ probe. This result suggests the involvement of this insertion sequence element in the dissemination of aniline degradation genes in the environment. By use of specific primers for the tdnQ gene from Pseudomonas putida UCC22, the diversity of the PCR-amplified fragments in the five strains was examined by denaturing gradient gel electrophoresis (DGGE). With DGGE, three different clusters of the tdnQ fragment could be distinguished. Sequencing data showed that the tdnQ sequences of I2, LME1, B8c, and CA28 were very closely related, while the tdnQ sequences of BN3.1 and P. putida UCC22 were only about 83% identical to the other sequences. Northern hybridization revealed that the tdnQ gene is transcribed only in the presence of aniline and not when only 3-CA is present.
KeywordMeSH Terms
Genetic Variation
9. Jorks  S, Müller  RH,     ( 1999 )

Comamonas acidovorans strain MC1: a new isolate capable of degrading the chiral herbicides dichlorprop and mecoprop and the herbicides 2,4-D and MCPA.

Microbiological research 154 (3)
PMID : 10652787  :   DOI  :   10.1016/S0944-5013(99)80021-4    
Abstract >>
A gram-negative prototrophic bacterial species, strain MC1, was isolated from the vicinity of herbicide-contaminated building rubble and identified by 16S rDNA sequence analysis, its physiological properties, GC content, and fatty acid composition as Comamonas acidovorans. This strain displays activity for the productive degradation of the two enantiomers of dichlorprop [(RS)-2-(2,4-dichlorophenoxy-)propionate; (RS)-2,4-DP] and mecoprop [(RS)-2-(4-chloro-2-methyl-) phenoxypropionate; (RS)-MCPP] in addition phenoxyacetate herbicides, i.e. 2,4-dichlorophenoxyacetate (2,4-D) and 4-chloro-2-methylphenoxyacetate (MCPA), and various chlorophenols were utilized. Rates amounted to 1.2 mmoles/h g dry mass (2,4-D) and 2.7 mmoles/h g dry mass [(RS)-2,4-DP]. Degradation of (RS)-2,4-DP was not inhibited up to concentrations of 500 mg/l, nor of 2,4-D up to 200 mg/l. The optimum pH value of (RS)-2,4-DP degradation was around 8. The application of respective primers for PCR amplification revealed the presence of tfdB and tfdC genes.
KeywordMeSH Terms
10. Mayer  J, Denger  K, Smits  TH, Hollemeyer  K, Groth  U, Cook  AM,     ( 2006 )

N-acetyltaurine dissimilated via taurine by Delftia acidovorans NAT.

Archives of microbiology 186 (1)
PMID : 16802176  :   DOI  :   10.1007/s00203-006-0123-7    
Abstract >>
The naturally occurring sulfonate N-acetyltaurine was synthesized chemically and its identity was confirmed. Aerobic enrichment cultures for bacteria able to utilize N-acetyltaurine as sole source of fixed nitrogen or as sole source of carbon were successful. One representative isolate, strain NAT, which was identified as a strain of Delftia acidovorans, grew with N-acetyltaurine as carbon source and excreted stoichiometric amounts of sulfate and ammonium. Inducible enzyme activities were measured in crude extracts of this organism to elucidate the degradative pathway. Cleavage of N-acetyltaurine by a highly active amidase yielded acetate and taurine. The latter was oxidatively deaminated by taurine dehydrogenase to ammonium and sulfoacetaldehyde. This key intermediate of sulfonate catabolism was desulfonated by the known reaction of sulfoacetaldehyde acetyltransferase to sulfite and acetyl phosphate, which was further degraded to enter central metabolism. A degradative pathway including transport functions is proposed.
KeywordMeSH Terms
11. Hongpattarakere  T, Komeda  H, Asano  Y,     ( 2005 )

Purification, characterization, gene cloning and nucleotide sequencing of D: -stereospecific amino acid amidase from soil bacterium: Delftia acidovorans.

Journal of industrial microbiology & biotechnology 32 (11��12��)
PMID : 15959727  :   DOI  :   10.1007/s10295-005-0246-x    
Abstract >>
The D-amino acid amidase-producing bacterium was isolated from soil samples using an enrichment culture technique in medium broth containing D-phenylalanine amide as a sole source of nitrogen. The strain exhibiting the strongest activity was identified as Delftia acidovorans strain 16. This strain produced intracellular D-amino acid amidase constitutively. The enzyme was purified about 380-fold to homogeneity and its molecular mass was estimated to be about 50 kDa, on sodium dodecyl sulfate polyacrylamide gel electrophoresis. The enzyme was active preferentially toward D-amino acid amides rather than their L-counterparts. It exhibited strong amino acid amidase activity toward aromatic amino acid amides including D-phenylalanine amide, D-tryptophan amide and D-tyrosine amide, yet it was not specifically active toward low-molecular-weight D-amino acid amides such as D-alanine amide, L-alanine amide and L-serine amide. Moreover, it was not specifically active toward oligopeptides. The enzyme showed maximum activity at 40 degrees C and pH 8.5 and appeared to be very stable, with 92.5% remaining activity after the reaction was performed at 45 degrees C for 30 min. However, it was mostly inactivated in the presence of phenylmethanesulfonyl fluoride or Cd2+, Ag+, Zn2+, Hg2+ and As3+ . The NH2 terminal and internal amino acid sequences of the enzyme were determined; and the gene was cloned and sequenced. The enzyme gene damA encodes a 466-amino-acid protein (molecular mass 49,860.46 Da); and the deduced amino acid sequence exhibits homology to the D-amino acid amidase from Variovorax paradoxus (67.9% identity), the amidotransferase A subunit from Burkholderia fungorum (50% identity) and other enantioselective amidases.
KeywordMeSH Terms
Amidohydrolases
Soil Microbiology
12. Sota  M, Yano  H, Nagata  Y, Ohtsubo  Y, Genka  H, Anbutsu  H, Kawasaki  H, Tsuda  M,     ( 2006 )

Functional analysis of unique class II insertion sequence IS1071.

Applied and environmental microbiology 72 (1)
PMID : 16391056  :   DOI  :   10.1128/AEM.72.1.291-297.2006     PMC  :   PMC1352228    
Abstract >>
Various xenobiotic-degrading genes on many catabolic plasmids are often flanked by two copies of an insertion sequence, IS1071. This 3.2-kb IS element has long (110-bp) terminal inverted repeats (IRs) and a transposase gene that are phylogenetically related to those of the class II transposons. However, the transposition mechanism of IS1071 has remained unclear. Our study revealed that IS1071 was only able to transpose at high frequencies in two environmental beta-proteobacterial strains, Comamonas testosteroni and Delftia acidovorans, and not in any of the bacteria examined which belong to the alpha- and gamma-proteobacteria. IS1071 was found to have the functional features of the class II transposons in that (i) the final product of the IS1071 transposition was a cointegrate of its donor and target DNA molecules connected by two directly repeated copies of IS1071, one at each junction; (ii) a 5-bp duplication of the target sequence was observed at the insertion site; and (iii) a tnpA mutation of IS1071 was efficiently complemented by supplying the wild-type tnpA gene in trans. Deletion analysis of the IS1071 IR sequences indicated that nearly the entire region of the IRs was required for its transposition, suggesting that the interaction between the transposase and IRs of IS1071 might be different from that of the other well-characterized class II transposons.
KeywordMeSH Terms
DNA Transposable Elements
13. Urata  M, Uchida  E, Nojiri  H, Omori  T, Obo  R, Miyaura  N, Ouchiyama  N,     ( 2004 )

Genes involved in aniline degradation by Delftia acidovorans strain 7N and its distribution in the natural environment.

Bioscience, biotechnology, and biochemistry 68 (12)
PMID : 15618615  :   DOI  :   10.1271/bbb.68.2457    
Abstract >>
Aniline-degraders were isolated from activated sludge and environmental samples and classified into eight phylogenetic groups. Seven groups were classified into Gram-negative bacteria, such as Acidovorax sp., Acinetobacter sp., Delftia sp., Comamonas sp., and Pseudomonas sp., suggesting the possible dominance of Gram-negative aniline-degraders in the environment. Aniline degradative genes were cloned from D. acidovorans strain 7N, and the nucleotide sequence of the 8,039-bp fragment containing eight open reading frames was determined. Their deduced amino acid sequences showed homologies to glutamine synthetase (GS)-like protein, glutamine amidotransferase (GA)-like protein, large and small subunits of aniline dioxygenase, reductase, LysR-type regulator, small ferredoxin-like protein, and catechol 2,3-dioxygenase, suggesting a high similarity of this gene cluster to those in P. putida strain UCC22 and Acinetobacter sp. strain YAA. Polymerase chain reaction (PCR) and sequencing analyses of GS-like protein gene segments of other Gram-negative bacteria suggested that Gram-negative bacteria have aniline degradative gene that can be divided into two distinctive groups.
KeywordMeSH Terms
14. Schleinitz  KM, Kleinsteuber  S, Vallaeys  T, Babel  W,     ( 2004 )

Localization and characterization of two novel genes encoding stereospecific dioxygenases catalyzing 2(2,4-dichlorophenoxy)propionate cleavage in Delftia acidovorans MC1.

Applied and environmental microbiology 70 (9)
PMID : 15345421  :   DOI  :   10.1128/AEM.70.9.5357-5365.2004     PMC  :   PMC520888    
Abstract >>
Two novel genes, rdpA and sdpA, encoding the enantiospecific alpha-ketoglutarate dependent dioxygenases catalyzing R,S-dichlorprop cleavage in Delftia acidovorans MC1 were identified. Significant similarities to other known genes were not detected, but their deduced amino acid sequences were similar to those of other alpha-ketoglutarate dioxygenases. RdpA showed 35% identity with TauD of Pseudomonas aeruginosa, and SdpA showed 37% identity with TfdA of Ralstonia eutropha JMP134. The functionally important amino acid sequence motif HX(D/E)X(23-26)(T/S)X(114-183)HX(10-13)R/K, which is highly conserved in group II alpha-ketoglutarate-dependent dioxygenases, was present in both dichlorprop-cleaving enzymes. Transposon mutagenesis of rdpA inactivated R-dichlorprop cleavage, indicating that it was a single-copy gene. Both rdpA and sdpA were located on the plasmid pMC1 that also carries the lower pathway genes. Sequencing of a 25.8-kb fragment showed that the dioxygenase genes were separated by a 13.6-kb region mainly comprising a Tn501-like transposon. Furthermore, two copies of a sequence similar to IS91-like elements were identified. Hybridization studies comparing the wild-type plasmid and that of the mutant unable to cleave dichlorprop showed that rdpA and sdpA were deleted, whereas the lower pathway genes were unaffected, and that deletion may be caused by genetic rearrangements of the IS91-like elements. Two other dichlorprop-degrading bacterial strains, Rhodoferax sp. strain P230 and Sphingobium herbicidovorans MH, were shown to carry rdpA genes of high similarity to rdpA from strain MC1, but sdpA was not detected. This suggested that rdpA gene products are involved in the degradation of R-dichlorprop in these strains.
KeywordMeSH Terms
15. Benndorf  D, Davidson  I, Babel  W,     ( 2004 )

Regulation of catabolic enzymes during long-term exposure of Delftia acidovorans MC1 to chlorophenoxy herbicides.

Microbiology (Reading, England) 150 (Pt 4)
PMID : 15073309  :   DOI  :   10.1099/mic.0.26774-0    
Abstract >>
Delftia acidovorans MC1 is able to grow on chlorophenoxy herbicides such as 2,4-dichlorophenoxypropionic acid (2,4-DCPP) and 2,4-dichlorophenoxyacetic acid as sole sources of carbon and energy. High concentrations of the potentially toxic organics inhibit the productive degradation and poison the organism. To discover the target of chlorophenoxy herbicides in D. acidovorans MC1 and to recognize adaptation mechanisms, the response to chlorophenoxy acids at the level of proteins was analysed. The comparison of protein patterns after chemostatic growth on pyruvate and 2,4-DCPP facilitated the discovery of several proteins induced and repressed due to the substrate shifts. Many of the induced enzymes, for example two chlorocatechol 1,2-dioxygenases, are involved in the metabolism of 2,4-DCPP. A stronger induction of some catabolic enzymes (chlorocatechol 1,2-dioxygenase TfdC(II), chloromuconate cycloisomerase TfdD) caused by an instant increase in the concentration of 2,4-DCPP resulted in increased rates of productive detoxification and finally in resistance of the cells. Nevertheless, the decrease of the (S)-2,4-DCPP-specific 2-oxoglutarate-dependent dioxygenase in 2D gels reveals a potential bottleneck in 2,4-DCPP degradation. Well-known heat-shock proteins and oxidative-stress proteins play a minor role in adaptation, because apart from DnaK only a weak or no induction of the proteins GroEL, AhpC and SodA was observed. Moreover, the modification of elongation factor Tu (TufA), a strong decrease of asparaginase and the induction of the hypothetical periplasmic protein YceI point to additional resistance mechanisms against chlorophenoxy herbicides.
KeywordMeSH Terms
Gene Expression Regulation, Enzymologic
16. Tsuge  T, Imazu  S, Takase  K, Taguchi  S, Doi  Y,     ( 2004 )

An extra large insertion in the polyhydroxyalkanoate synthase from Delftia acidovorans DS-17: its deletion effects and relation to cellular proteolysis.

FEMS microbiology letters 231 (1)
PMID : 14769470  :   DOI  :   10.1016/S0378-1097(03)00930-3    
Abstract >>
The polyhydroxyalkanoate (PHA) synthase (PhaC(Da)) from Delftia acidovorans DS-17 (formerly Comamonas acidovorans) has a unique large insertion consisting of 40 amino acid residues in the alpha/beta hydrolase fold region. In order to examine whether this insertion is necessary for enzyme function, we generated a mutant gene where the nucleotides encoding the insertion sequence were deleted [phaC(Da)del(342-381)]. The ability of the mutant PhaC(Da) lacking the insertion sequence to produce PHA in recombinant Escherichia coli JM109 was compared with that of wild-type PhaC(Da). The results revealed that the mutant enzyme had approximately one fourth the activity of the wild-type enzyme. However, there was no significant difference in PHA content accumulated in cells harboring either the mutant PhaC(Da) or wild-type PhaC(Da) nor were there any differences in the molecular masses of the produced polymers. Therefore, we have concluded that the characteristic insertion is not indispensable for PHA synthesis. Also, slight cellular proteolysis in E. coli was found specifically for wild-type PhaC(Da) by Western blot analysis. This result prompted us to further examine the proteolytic stability of PhaC(Da) in D. acidovorans. Consequently, it has been suggested that the insertion region of PhaC(Da) is susceptible to cellular proteolysis during accumulation of PHA.
KeywordMeSH Terms
17. Gueneau de Novoa  P, Williams  KP,     ( 2004 )

The tmRNA website: reductive evolution of tmRNA in plastids and other endosymbionts.

Nucleic acids research 32 (Database issue)
PMID : 14681369  :   DOI  :   10.1093/nar/gkh102     PMC  :   PMC308836    
Abstract >>
tmRNA combines tRNA- and mRNA-like properties and ameliorates problems arising from stalled ribosomes. Research on the mechanism, structure and biology of tmRNA is served by the tmRNA website (http://www.indiana.edu/~ tmrna), a collection of sequences, alignments, secondary structures and other information. Because many of these sequences are not in GenBank, a BLAST server has been added; another new feature is an abbreviated alignment for the tRNA-like domain only. Many tmRNA sequences from plastids have been added, five found in public sequence data and another 10 generated by direct sequencing; detection in early-branching members of the green plastid lineage brings coverage to all three primary plastid lineages. The new sequences include the shortest known tmRNA sequence. While bacterial tmRNAs usually have a lone pseudoknot upstream of the mRNA segment and a string of three or four pseudoknots downstream, plastid tmRNAs collectively show loss of pseudoknots at both postions. The pseudoknot-string region is also too short to contain the usual pseudoknot number in another new entry, the tmRNA sequence from a bacterial endosymbiont of insect cells, Tremblaya princeps. Pseudoknots may optimize tmRNA function in free-living bacteria, yet become dispensible when the endosymbiotic lifestyle relaxes selective pressure for fast growth.
KeywordMeSH Terms
Databases, Nucleic Acid
Evolution, Molecular
Internet
18. Sota  M, Kawasaki  H, Tsuda  M,     ( 2003 )

Structure of haloacetate-catabolic IncP-1beta plasmid pUO1 and genetic mobility of its residing haloacetate-catabolic transposon.

Journal of bacteriology 185 (22)
PMID : 14594853  :   DOI  :   10.1128/jb.185.22.6741-6745.2003     PMC  :   PMC262110    
Abstract >>
The self-transmissible plasmid pUO1 from Delftia acidovorans strain B carries two haloacetate-catabolic transposons, TnHad1 and TnHad2, and the mer genes for resistance to mercury. The complete 67,066-bp sequence of pUO1 revealed that the mer genes were also carried by two Tn402/Tn5053-like transposons, Tn4671 and Tn4672, and that the pUO1 backbone regions shared 99% identity to those of the archetype IncP-1beta plasmid R751. Comparison of pUO1 with three other IncP-1beta plasmids illustrated the importance of transposon insertion in the diversity and evolution of this group of plasmids. Mutational analysis of the four outermost residues in the inverted repeats (IRs) of TnHad2, a Tn21-related transposon, revealed a crucial role of the second residue of its IRs in transposition.
KeywordMeSH Terms
Conjugation, Genetic
19. Ivanov  NV, Hubálek  F, Trani  M, Edmondson  DE,     ( 2003 )

Factors involved in the assembly of a functional molybdopyranopterin center in recombinant Comamonas acidovorans xanthine dehydrogenase.

European journal of biochemistry 270 (23)
PMID : 14622263  :   DOI  :   10.1046/j.1432-1033.2003.03875.x    
Abstract >>
Previous work from this laboratory has shown that the spectral and functional properties of a prokaryotic xanthine dehydrogenase from Comamonas acidovorans show some similarities to those of the well-characterized eukaryotic enzymes isolated from bovine milk and from chicken liver [Xiang, Q. & Edmondson, D.E. (1996) Biochemistry35, 5441-5450]. Therefore, this system was chosen to study the factors involved in the expression of functional recombinant enzyme in Escherichia coli to provide insights into the assembly of the functional Mo-pyranopterin center. Genes xdhA and xdhB (encoding the two known subunits of the native enzyme) and putative genes xprA and ssuABC were sequenced. Heterologous expression of the xdhAB genes in E. coli JM109(DE3) produced active enzyme. The Mo content was 0.11-0.16 mol per alphabeta protomer, while the Fe and FAD levels were at stoichiometries similar to that of the native enzyme. The XDH activity increased sixfold when the culture was grown under conditions of low aeration (6 L.min-1) as compared with high aeration (12 L.min-1). Co-expression of the xdhAB genes with the Pseudomonas aeruginosa PA1522 (xdhC) gene increased the level of Mo incorporated into the expressed enzyme to a 1 : 1 stoichiometry. Under these conditions, high levels of functional protein (2.284 U.mg-1 and 8.039 mg.L-1 of culture) were obtained independently of the level of culture aeration. Therefore, the assembly of a functional Mo-pyranopterin center in XDH requires the presence of a functional xdhC gene product. The purified, recombinant XDH shows spectral and kinetic properties identical to those of the native enzyme.
KeywordMeSH Terms
20. Gerbl-Rieger  S, Peters  J, Kellermann  J, Lottspeich  F, Baumeister  W,     ( 1991 )

Nucleotide and derived amino acid sequences of the major porin of Comamonas acidovorans and comparison of porin primary structures.

Journal of bacteriology 173 (7)
PMID : 1848840  :   DOI  :   10.1128/jb.173.7.2196-2205.1991     PMC  :   PMC207767    
Abstract >>
The DNA sequence of the gene which codes for the major outer membrane porin (Omp32) of Comamonas acidovorans has been determined. The structural gene encodes a precursor consisting of 351 amino acid residues with a signal peptide of 19 amino acid residues. Comparisons with amino acid sequences of outer membrane proteins and porins from several other members of the class Proteobacteria and of the Chlamydia trachomatis porin and the Neurospora crassa mitochondrial porin revealed a motif of eight regions of local homology. The results of this analysis are discussed with regard to common structural features of porins.
KeywordMeSH Terms
Bacterial Proteins
Genes, Bacterial
21. Tayeb  LA, Lefevre  M, Passet  V, Diancourt  L, Brisse  S, Grimont  PA,     ( 2008 )

Comparative phylogenies of Burkholderia, Ralstonia, Comamonas, Brevundimonas and related organisms derived from rpoB, gyrB and rrs gene sequences.

Research in microbiology 159 (3)
PMID : 18280706  :   DOI  :   10.1016/j.resmic.2007.12.005    
Abstract >>
Phylogenetic analysis of strains from Burkholderia, Ralstonia, Cupriavidus, Comamonas, Delftia, Acidovorax, Brevundimonas, Herbaspirillum huttiense and "Pseudomonas butanovora" was performed based on the protein-coding genes rpoB and gyrB and on the 16S rRNA-coding gene rrs. Overall, the phylogenies deduced from the three genes were concordant among themselves and with current taxonomy. However, a few differences among individual gene phylogenies were noted. For example, the separation of Cupriavidus from Ralstonia was not supported in the rpoB tree, as Ralstonia was nested within Cupriavidus. Similarly, the separation of Delftia from Comamonas was not supported in the gyrB tree. Based on rrs and rpoB, the genus Burkholderia contained four groups: (i) the B. cepacia complex, (ii) the B. pseudomallei-B. thailandensis group, (iii) a 6-species group including B. caledonica and B. glathei and (iv) the B. plantarii-B. glumae-B. gladioli group. However, B. caribensis and B. glathei stood as a fifth group based on gyrB. It appears that a phylogeny cannot be reliably based on a single gene. Using rpoB and gyrB, better separation of closely related species was obtained compared to rrs, indicating the potential of these two genes for identification and species definition. Nevertheless, intraspecific sequence diversity will need to be determined to fully establish the value of these genes for strain identification.
KeywordMeSH Terms
Phylogeny
22. Xu  H, Davies  J, Miao  V,     ( 2007 )

Molecular characterization of class 3 integrons from Delftia spp.

Journal of bacteriology 189 (17)
PMID : 17573473  :   DOI  :   10.1128/JB.00348-07     PMC  :   PMC1951913    
Abstract >>
Two environmental strains, Delftia acidovorans C17 and Delftia tsuruhatensis A90, were found to carry class 3 integrons, which have seldom been reported and then only from pathogens in which they are associated with antibiotic resistance genes. The Delftia integrons comprised a highly conserved class 3 integrase gene, upstream and oppositely oriented from a set of three or four gene cassettes that encoded unidentified functions. The A90 integron had one more gene cassette than the C17 integron, but the two were otherwise the same; furthermore, they were located within regions of sequence identity in both strains and linked to chromosomal genes. A screen of other Delftia and related strains did not reveal the presence of additional class 3 integrons. The observations suggest that these integrons were horizontally transferred to Delftia as part of a larger region and reside as chromosomal elements that probably predate transposon dissemination, as has been proposed for certain class 1 integrons.
KeywordMeSH Terms
23. Król  JE, Penrod  JT, McCaslin  H, Rogers  LM, Yano  H, Stancik  AD, Dejonghe  W, Brown  CJ, Parales  RE, Wuertz  S, Top  EM,     ( 2012 )

Role of IncP-1�] plasmids pWDL7::rfp and pNB8c in chloroaniline catabolism as determined by genomic and functional analyses.

Applied and environmental microbiology 78 (3)
PMID : 22101050  :   DOI  :   10.1128/AEM.07480-11     PMC  :   PMC3264110    
Abstract >>
Broad-host-range catabolic plasmids play an important role in bacterial degradation of man-made compounds. To gain insight into the role of these plasmids in chloroaniline degradation, we determined the first complete nucleotide sequences of an IncP-1 chloroaniline degradation plasmid, pWDL7::rfp and its close relative pNB8c, as well as the expression pattern, function, and bioaugmentation potential of the putative 3-chloroaniline (3-CA) oxidation genes. Based on phylogenetic analysis of backbone proteins, both plasmids are members of a distinct clade within the IncP-1�] subgroup. The plasmids are almost identical, but whereas pWDL7::rfp carries a duplicate inverted catabolic transposon, Tn6063, containing a putative 3-CA oxidation gene cluster, dcaQTA1A2BR, pNB8c contains only a single copy of the transposon. No genes for an aromatic ring cleavage pathway were detected on either plasmid, suggesting that only the upper 3-CA degradation pathway was present. The dcaA1A2B gene products expressed from a high-copy-number vector were shown to convert 3-CA to 4-chlorocatechol in Escherichia coli. Slight differences in the dca promoter region between the plasmids and lack of induction of transcription of the pNB8c dca genes by 3-CA may explain previous findings that pNB8C does not confer 3-CA transformation. Bioaugmentation of activated sludge with pWDL7::rfp accelerated removal of 3-CA, but only in the presence of an additional carbon source. Successful bioaugmentation requires complementation of the upper pathway genes with chlorocatechol cleavage genes in indigenous bacteria. The genome sequences of these plasmids thus help explain the molecular basis of their catabolic activities.
KeywordMeSH Terms
24.     ( 1997 )

Structural studies of malate dehydrogenases (MDHs): MDHs in Brevundimonas species are the first reported MDHs in Proteobacteria which resemble lactate dehydrogenases in primary structure.

Journal of bacteriology 179 (12)
PMID : 9190829  :   DOI  :   10.1128/jb.179.12.4066-4070.1997     PMC  :   PMC179222    
Abstract >>
The N-terminal sequences of malate dehydrogenases from 10 bacterial strains, representing seven genera of Proteobacteria, were determined. Of these, the enzyme sequences of species classified in the genus Brevundimonas clearly resembled those malate dehydrogenases with greatest similarity to lactate dehydrogenases. Additional evidence from subunit molecular weights, peptide mapping, and enzyme mobilities suggested that malate dehydrogenases from species of the genus Brevundimonas were structurally distinct from others in the study.
KeywordMeSH Terms
25. Parks  DH, Chuvochina  M, Waite  DW, Rinke  C, Skarshewski  A, Chaumeil  PA, Hugenholtz  P,     ( 2018 )

A standardized bacterial taxonomy based on genome phylogeny substantially revises the tree of life.

Nature biotechnology 36 (10)
PMID : 30148503  :   DOI  :   10.1038/nbt.4229    
Abstract >>
Taxonomy is an organizing principle of biology and is ideally based on evolutionary relationships among organisms. Development of a robust bacterial taxonomy has been hindered by an inability to obtain most bacteria in pure culture and, to a lesser extent, by the historical use of phenotypes to guide classification. Culture-independent sequencing technologies have matured sufficiently that a comprehensive genome-based taxonomy is now possible. We used a concatenated protein phylogeny as the basis for a bacterial taxonomy that conservatively removes polyphyletic groups and normalizes taxonomic ranks on the basis of relative evolutionary divergence. Under this approach, 58% of the 94,759 genomes comprising the Genome Taxonomy Database had changes to their existing taxonomy. This result includes the description of 99 phyla, including six major monophyletic units from the subdivision of the Proteobacteria, and amalgamation of the Candidate Phyla Radiation into a single phylum. Our taxonomy should enable improved classification of uncultured bacteria and provide a sound basis for ecological and evolutionary studies.
KeywordMeSH Terms
Genome, Bacterial
Phylogeny
26.     ( 1998 )

The regulated outer membrane protein Omp21 from Comamonas acidovorans is identified as a member of a new family of eight-stranded beta-sheet proteins by its sequence and properties.

Journal of bacteriology 180 (15)
PMID : 9683466  :   PMC  :   PMC107353    
Abstract >>
Omp21, a minor outer membrane protein of the soil bacterium Comamonas acidovorans, was purified from a spontaneous mutant lacking a surface layer and long-chain lipopolysaccharide. Omp21 synthesis is enhanced by oxygen depletion, and the protein has a variable electrophoretic mobility in sodium dodecyl sulfate-polyacrylamide gel electrophoresis due to its heat-modifiable behavior. The structural gene omp21 encodes a precursor of 204 amino acids with a putative signal peptide of 21 amino acids. Mature Omp21 is a typical outer membrane protein with a high content of beta structure as determined by infrared spectroscopy. Sequence comparisons show that it belongs to a new outer membrane protein family, characterized by eight amphipathic beta strands, which includes virulence proteins, such as the neisserial opacity proteins, Salmonella typhimurium Rck, and Yersinia enterocolitica Ail, as well as the major outer membrane proteins OmpA from Escherichia coli and OprF from Pseudomonas aeruginosa.
KeywordMeSH Terms
Protein Structure, Secondary
27.     ( 1998 )

Genetic analysis of Comamonas acidovorans polyhydroxyalkanoate synthase and factors affecting the incorporation of 4-hydroxybutyrate monomer.

Applied and environmental microbiology 64 (9)
PMID : 9726894  :   PMC  :   PMC106744    
Abstract >>
The polyhydroxyalkanoate (PHA) synthase gene of Comamonas acidovorans DS-17 (phaCCa) was cloned by using the synthase gene of Alcaligenes eutrophus as a heterologous hybridization probe. Complete sequencing of a 4.0-kbp SmaI-HindIII (SH40) subfragment revealed the presence of a 1,893-bp PHA synthase coding region which was followed by a 1,182-bp beta-ketothiolase gene (phaACa). Both the translated products of these genes showed significant identity, 51.1 and 74.2%, respectively, to the primary structures of the products of the corresponding genes in A. eutrophus. The arrangement of PHA biosynthesis genes in C. acidovorans was also similar to that in A. eutrophus except that the third gene, phaB, coding for acetoacetyl-coenzyme A reductase, was not found in the region downstream of phaACa. The cloned fragment complemented a PHA-negative mutant of A. eutrophus, PHB-4, resulting in poly-3-hydroxybutyrate accumulation of up to 73% of the dry cell weight when fructose was the carbon source. The heterologous expression enabled the incorporation of 4-hydroxybutyrate (4HB) and 3-hydroxyvalerate monomers. The PHA synthase of C. acidovorans does not appear to show any preference for 4-hydroxybutyryl-coenzyme A as a substrate. This leads to the suggestion that in C. acidovorans, it is the metabolic pathway, and not the specificity of the organism's PHA synthase, that drives the incorporation of 4HB monomers, resulting in the efficient accumulation of PHA with a high 4HB content.
KeywordMeSH Terms
28.     ( 1997 )

Biochemical and molecular characterization of the polyhydroxybutyrate depolymerase of Comamonas acidovorans YM1609, isolated from freshwater.

Applied and environmental microbiology 63 (12)
PMID : 9406404  :   PMC  :   PMC168810    
Abstract >>
Comamonas acidovorans YM1609 secreted a polyhydroxybutyrate (PHB) depolymerase into the culture supernatant when it was cultivated on poly(3-hydroxybutyrate) [P(3HB)] or poly(3-hydroxybutyrate-co-3-hydroxyvalerate) [P(3HB-co-3HV)] as the sole carbon source. The PHB depolymerase was purified from culture supernatant of C. acidovorans by two chromatographic methods, and its molecular mass was determined as 45,000 Da by polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate. The enzyme was stable at temperatures below 37 degrees C and at pH values of 6 to 10, and its activity was inhibited by diisopropyl fluorophosphonate. The liquid chromatography analysis of water-soluble products revealed that the primary product of enzymatic hydrolysis of P(3HB) was a dimer of 3-hydroxybutyric acid. Kinetics of enzymatic hydrolysis of P(3HB) film were studied. In addition, a gene encoding the PHB depolymerase was cloned from the C. acidovorans genomic library. The nucleotide sequence of this gene was found to encode a protein of 494 amino acids (M(r), 51,018 Da). Furthermore, by analysis of the N-terminal amino acid sequence of the purified enzyme, the molecular mass of the mature enzyme was calculated to be 48,628 Da. Analysis of the deduced amino acid sequence suggested a domain structure of the protein containing a catalytic domain, fibronectin type III module as linker, and a putative substrate-binding domain. Electron microscopic visualization of the mixture of P(3HB) single crystals and a fusion protein of putative substrate-binding domain with glutathione S-transferase demonstrated that the fusion protein adsorbed strongly and homogeneously to the surfaces of P(3HB) single crystals.
KeywordMeSH Terms
29.     ( 1998 )

Population dynamics of phenol-degrading bacteria in activated sludge determined by gyrB-targeted quantitative PCR.

Applied and environmental microbiology 64 (4)
PMID : 9546154  :   PMC  :   PMC106130    
Abstract >>
A method for quantifying bacterial populations introduced into an activated-sludge microbial community is described. The method involves extraction of DNA from activated sludge, appropriate dilution of the extracted DNA with DNA extracted from nonintroduced activated sludge, PCR amplification of a gyrB gene fragment from the introduced strain with a set of strain-specific primers, and quantification of the electrophoresed PCR product by densitometry. The adequacy of the method was examined by analyzing the population dynamics of two phenol-degrading bacteria, Pseudomonas putida BH and Comamonas sp. strain E6, that had been introduced into phenol-digesting activated sludge. The density of each of the two populations determined by the PCR method immediately after the introduction was consistent with the density estimated from a plate count of the inoculum. This quantitative PCR method revealed different population dynamics for the two strains in the activated sludge under different phenol-loading conditions. The behavior of both of these strains in the activated sludge reflected the growth kinetics of the strains determined in laboratory axenic cultures.
KeywordMeSH Terms

331, Shih-Pin Rd., Hsinchu 30062, Taiwan

Phone: +886-3-5223191

E-mail: bcrcweb@firdi.org.tw

web maintainance: +886-3-5223191 ext 593

Copyright © 2018.BCRC All rights reserved.The duplication or use of information and data such as texts or images or any linkage the website at the "bcrc.firdi.org.tw" is only permitted with the indication of the source or with prior approval by the BCRC(Bioresource Collection and Research Center).