Home / BCRC Content / 16810 / 

Return

  Research Article

The information shown in this page was generated using the cross-referenced linkage within public domain database between their strains and BCRC related strains. Usually the information provided from public domain databases varies with diffent confidences and errors, BCRC provides the related information here at best effort, but BCRC doesn't take the responsibility about the correctness of the information provided here.

1. Shen  FT, Lu  HL, Lin  JL, Huang  WS, Arun  AB, Young  CC,     ( 2006 )

Phylogenetic analysis of members of the metabolically diverse genus Gordonia based on proteins encoding the gyrB gene.

Research in microbiology 157 (4)
PMID : 16310344  :   DOI  :   10.1016/j.resmic.2005.09.007    
Abstract >>
Members of the metabolically diverse genus Gordonia were isolated from various biotopes including pristine and polluted sites around Taiwan. Identification, comparison and diversity assessment based on the gyrB gene were carried out using a newly developed primer pair for gyrB. The 16S rRNA gene was also sequenced for comparison. A 1.2-kb fragment of the gyrB gene of 17 Gordonia strains including type strains was determined by direct sequencing of PCR amplified fragments. A total of 25 strains (8 of which were retrieved from a public database) of the genus Gordonia form a distinct phyletic line in the GyrB-based tree and are separated from other closely related species of genera of the suborder Corynebacterineae. Sequence similarity of the gyrB sequence from twelve Gordonia type strains ranged from 79.3 to 97.2%, corresponding to between 270 and 41 nucleotide differences, while there was only a 0.3-3.8% difference in 16S rRNA gene sequence similarity at the interspecies level. Phylogenetic analysis based on the GyrB sequence deduced from the gyrB gene is consistent with that of DNA-DNA hybridization results and provides a better discrimination within the species of Gordonia compared to the 16S rRNA gene. The present study demonstrates that gyrB gene analysis will aid in describing novel species belonging to the genus Gordonia.
KeywordMeSH Terms
2. Shen  FT, Young  LS, Hsieh  MF, Lin  SY, Young  CC,     ( 2010 )

Molecular detection and phylogenetic analysis of the alkane 1-monooxygenase gene from Gordonia spp.

Systematic and applied microbiology 33 (2)
PMID : 20047814  :   DOI  :   10.1016/j.syapm.2009.11.003    
Abstract >>
The alkB gene encodes for alkane 1-monooxygenase, which is a key enzyme responsible for the initial oxidation of inactivated alkanes. This functional gene can be used as a marker to assess the catabolic potential of bacteria in bioremediation. In the present study, a pair of primers was designed based on the conserved regions of the AlkB amino acid sequences of Actinobacteria, for amplifying the alkB gene from the genus Gordonia (20 Gordonia strains representing 13 species). The amplified alkB genes were then sequenced and analyzed. In the phylogenetic tree based on the translated AlkB amino acid sequences, all the Gordonia segregated clearly from other closely related genera. The sequence identity of the alkB gene in Gordonia ranged from 58.8% to 99.1%, which showed higher sequence variation at the inter-species level compared with other molecular markers, such as the 16S rRNA gene (93.1-99.8%), gyrB gene (77.5-97.3%) or catA gene (72.4-99.5%). The genetic diversity of four selected loci also showed that the alkB gene might have evolved faster than rrn operons, as well as the gyrB or catA genes, in Gordonia. All the available actinobacterial alkB gene sequences derived from the whole genome shotgun sequencing projects are phylogenetically characterized here for the first time, and they exclude the possibility of horizontal gene transfer of the alkB gene in these bacterial groups.
KeywordMeSH Terms
Polymorphism, Genetic

331, Shih-Pin Rd., Hsinchu 30062, Taiwan

Phone: +886-3-5223191

E-mail: bcrcweb@firdi.org.tw

web maintainance: +886-3-5223191 ext 593

Copyright © 2018.BCRC All rights reserved.The duplication or use of information and data such as texts or images or any linkage the website at the "bcrc.firdi.org.tw" is only permitted with the indication of the source or with prior approval by the BCRC(Bioresource Collection and Research Center).