BCRC Strain Collection Catalog & Shopping Cart

  Home / BCRC Content / 21960 / 

Return

  Research Article

The information shown in this page was generated using the cross-referenced linkage within public domain database between their strains and BCRC related strains. Usually the information provided from public domain databases varies with different confidences and errors, BCRC provides the related information here at best effort, but BCRC doesn't take the responsibility about the correctness of the information provided here.

1. Zhang  Z, Dietrich  FS,     ( 2003 )

Verification of a new gene on Saccharomyces cerevisiae chromosome III.

Yeast (Chichester, England) 20 (8)
PMID : 12794934  :   DOI  :   10.1002/yea.996    
Abstract >>
We present verification of the existence of a previously unannotated, intron-containing gene of 134 amino acids (predicted molecular weight approximately 15.5 kDa) located on chromosome III of Saccharomyces cerevisiae. Strains carrying a deletion of this gene, which we have called YCL012C, reveal no apparent phenotype. Orthologues of YCL012C are present in related species S. bayanus, S. paradoxus and Ashbya gossypii. Comparison with other fungal sequences reveals that orthologues of this gene are likely present in Schizosaccharomyces pombe, Neurospora crassa and Cryptococcus neoformans as well, indicating that YCL012C is a widely conserved fungal gene.
KeywordMeSH Terms
2. Kurtzman  CP, Robnett  CJ,     ( 2003 )

Phylogenetic relationships among yeasts of the 'Saccharomyces complex' determined from multigene sequence analyses.

FEMS yeast research 3 (4)
PMID : 12748053  :   DOI  :   10.1016/S1567-1356(03)00012-6    
Abstract >>
Species of Saccharomyces, Arxiozyma, Eremothecium, Hanseniaspora (anamorph Kloeckera), Kazachstania, Kluyveromyces, Pachytichospora, Saccharomycodes, Tetrapisispora, Torulaspora, and Zygosaccharomyces, as well as three related anamorphic species assigned to Candida (C. castellii, C. glabrata, C. humilis), were phylogenetically analyzed from divergence in genes of the rDNA repeat (18S, 26S, ITS), single copy nuclear genes (translation elongation factor 1alpha, actin-1, RNA polymerase II) and mitochondrially encoded genes (small-subunit rDNA, cytochrome oxidase II). Single-gene phylogenies were congruent for well-supported terminal lineages but deeper branches were not well resolved. Analysis of combined gene sequences resolved the 75 species compared into 14 clades, many of which differ from currently circumscribed genera.
KeywordMeSH Terms
3. Langkjaer  RB, Cliften  PF, Johnston  M, Piskur  J,     ( 2003 )

Yeast genome duplication was followed by asynchronous differentiation of duplicated genes.

Nature 421 (6925)
PMID : 12594514  :   DOI  :   10.1038/nature01419    
Abstract >>
Gene redundancy has been observed in yeast, plant and human genomes, and is thought to be a consequence of whole-genome duplications. Baker's yeast, Saccharomyces cerevisiae, contains several hundred duplicated genes. Duplication(s) could have occurred before or after a given speciation. To understand the evolution of the yeast genome, we analysed orthologues of some of these genes in several related yeast species. On the basis of the inferred phylogeny of each set of genes, we were able to deduce whether the gene duplicated and/or specialized before or after the divergence of two yeast lineages. Here we show that the gene duplications might have occurred as a single event, and that it probably took place before the Saccharomyces and Kluyveromyces lineages diverged from each other. Further evolution of each duplicated gene pair-such as specialization or differentiation of the two copies, or deletion of a single copy--has taken place independently throughout the evolution of these species.
KeywordMeSH Terms
Evolution, Molecular
Gene Duplication
Genome, Fungal
4. Edskes  HK, Wickner  RB,     ( 2002 )

Conservation of a portion of the S. cerevisiae Ure2p prion domain that interacts with the full-length protein.

Proceedings of the National Academy of Sciences of the United States of America 99 Suppl 4 (N/A)
PMID : 12177423  :   DOI  :   10.1073/pnas.162349599     PMC  :   PMC139898    
Abstract >>
The [URE3] prion of Saccharomyces cerevisiae is a self-propagating inactive amyloid form of the Ure2 protein. Ure2p residues 1-65 constitute the prion domain, and the remaining C-terminal portion regulates nitrogen catabolism. We have examined the URE2 genes of wild-type isolates of S. cerevisiae and those of several pathogenic yeasts and a filamentous fungus. We find that the normal function of the S. cerevisiae Ure2p in nitrogen regulation is fully complemented by the Ure2p of Candida albicans, Candida glabrata, Candida kefyr, Candida maltosa, Saccharomyces bayanus, and Saccharomyces paradoxus, all of which have high homology in the C-terminal nitrogen regulation domain. However, there is considerable divergence of their N-terminal domains from that of Ure2p of S. cerevisiae. [URE3(Sc)] showed efficient transmission into S. cerevisiae ure2Delta cells if expressing a Ure2p of species within Saccharomyces. However, [URE3(Sc)] did not seed self-propagating inactivation of the Ure2p's from the other yeasts. When overexpressed as a fusion with green fluorescent protein, residues 5-47 of the S. cerevisiae prion domain are necessary for curing the [URE3] prion. Residues 11-39 are necessary for an inactivating interaction with the full-length Ure2p. A nearly identical region is highly conserved among many of the yeasts examined in this study, despite the wide divergence of sequences found in other parts of the N-terminal domains.
KeywordMeSH Terms
5. Kodama  Y, Omura  F, Ashikari  T,     ( 2001 )

Isolation and characterization of a gene specific to lager brewing yeast that encodes a branched-chain amino acid permease.

Applied and environmental microbiology 67 (8)
PMID : 11472919  :   DOI  :   10.1128/AEM.67.8.3455-3462.2001     PMC  :   PMC93043    
Abstract >>
We found two types of branched-chain amino acid permease gene (BAP2) in the lager brewing yeast Saccharomyces pastorianus BH-225 and cloned one type of BAP2 gene (Lg-BAP2), which is identical to that of Saccharomyces bayanus (by-BAP2-1). The other BAP2 gene of the lager brewing yeast (cer-BAP2) is very similar to the Saccharomyces cerevisiae BAP2 gene. This result substantiates the notion that lager brewing yeast is a hybrid of S. cerevisiae and S. bayanus. The amino acid sequence homology between S. cerevisiae Bap2p and Lg-Bap2p was 88%. The transcription of Lg-BAP2 was not induced by the addition of leucine to the growth medium, while that of cer-BAP2 was induced. The transcription of Lg-BAP2 was repressed by the presence of ethanol and weak organic acid, while that of cer-BAP2 was not affected by these compounds. Furthermore, Northern analysis during beer fermentation revealed that the transcription of Lg-BAP2 was repressed at the beginning of the fermentation, while cer-BAP2 was highly expressed throughout the fermentation. These results suggest that the transcription of Lg-BAP2 is regulated differently from that of cer-BAP2 in lager brewing yeasts.
KeywordMeSH Terms
Amino Acid Transport Systems
Saccharomyces cerevisiae Proteins
6. Casaregola  S, Nguyen  HV, Lapathitis  G, Kotyk  A, Gaillardin  C,     ( 2001 )

Analysis of the constitution of the beer yeast genome by PCR, sequencing and subtelomeric sequence hybridization.

International journal of systematic and evolutionary microbiology 51 (Pt 4)
PMID : 11491364  :   DOI  :   10.1099/00207713-51-4-1607    
Abstract >>
The lager brewing yeasts, Saccharomyces pastorianus (synonym Saccharomyces carlsbergensis), are allopolyploid, containing parts of two divergent genomes. Saccharomyces cerevisiae contributed to the formation of these hybrids, although the identity of the other species is still unclear. The presence of alleles specific to S. cerevisiae and S. pastorianus was tested for by PCR/RFLP in brewing yeasts of various origins and in members of the Saccharomyces sensu stricto complex. S. cerevisiae-type alleles of two genes, HIS4 and YCL008c, were identified in another brewing yeast, S. pastorianus CBS 1503 (Saccharomyces monacensis), thought to be the source of the other contributor to the lager hybrid. This is consistent with the hybridization of S. cerevisiae subtelomeric sequences X and Y' to the electrophoretic karyotype of this strain. S. pastorianus CBS 1503 (S. monacensis) is therefore probably not an ancestor of S. pastorianus, but a related hybrid. Saccharomyces bayanus, also thought to be one of the contributors to the lager yeast hybrid, is a heterogeneous taxon containing at least two subgroups, one close to the type strain, CBS 380T, the other close to CBS 395 (Saccharomyces uvarum). The partial sequences of several genes (HIS4, MET10, URA3) were shown to be identical or very similar (over 99%) in S. pastorianus CBS 1513 (S. carlsbergensis), S. bayanus CBS 380T and its close derivatives, showing that S. pastorianus and S. bayanus have a common ancestor. A distinction between two subgroups within S. bayanus was made on the basis of sequence analysis: the subgroup represented by S. bayanus CBS 395 (S. uvarum) has 6-8% sequence divergence within the genes HIS4, MET10 and MET2 from S. bayanus CBS 380T, indicating that the two S. bayanus subgroups diverged recently. The detection of specific alleles by PCR/RFLP and hybridization with S. cerevisiae subtelomeric sequences X and Y' to electrophoretic karyotypes of brewing yeasts and related species confirmed our findings and revealed substantial heterogeneity in the genome constitution of Czech brewing yeasts used in production.
KeywordMeSH Terms
Genome, Fungal
7. Tamai  Y, Tanaka  K, Umemoto  N, Tomizuka  K, Kaneko  Y,     ( 2000 )

Diversity of the HO gene encoding an endonuclease for mating-type conversion in the bottom fermenting yeast Saccharomyces pastorianus.

Yeast (Chichester, England) 16 (14)
PMID : 11015730  :   DOI  :   10.1002/1097-0061(200010)16:14<1335::AID-YEA623>3.0.CO;2-P    
Abstract >>
Two types of HO gene were cloned, sequenced and characterized from the bottom fermenting yeast Saccharomyces pastorianus. The HO gene present on the 1500 kb chromosome was designated Sc-HO (S. cerevisiae-type HO), because the nucleotide sequence of its promoter region and the open reading frame (ORF) was almost identical to that of the S. cerevisiae laboratory strain HO gene (Lab-HO). The other HO gene, designated Lg-HO (Lager-fermenting-yeast specific HO), showed 64% and 83% homology with the promoter and ORF of the Lab-HO at the nucleotide sequence level, respectively, and was located on the 1100 kb chromosome. Analysis of the 4 kb DNA fragment amplified from S. bayanus type strain indicated that the nucleotide sequence of S. bayanus-HO is almost identical to that of the Lg-HO. The SSB1 gene located downstream of the HO gene in S. cerevisiae was also found in the 3' distal region of the Sc-HO, Lg-HO and S. bayanus HO genes. These results showed that the genetic arrangement around the HO loci both of S. pastorianus and S. bayanus is identical to S. cerevisiae. Southern analysis has revealed that Saccharomyces sensu stricto contain four types of HO genes; S. paradoxus-type HO, the Sc-HO, the Lg-HO and S. uvarum-type HO genes. This HO gene diversity provides useful information for the classification of strains belonging to Saccharomyces sensu stricto. The S. pastorianus Sc-HO, Lg-HO and S. bayanus-HO Accession Nos in the DDBJ Nucleotide Sequence Database are AB027449, AB027450 and AB027451, respectively.
KeywordMeSH Terms
Genetic Variation
Saccharomyces cerevisiae Proteins
8. Sloan  J, Miller  B, Young  ET,     ( 2000 )

Evolution of a glucose-regulated ADH gene in the genus Saccharomyces.

Gene 245 (2)
PMID : 10717481  :   DOI  :   10.1016/s0378-1119(00)00035-4    
Abstract >>
To determine when a glucose-repressed alcohol dehydrogenase isozyme and its regulatory gene, ADR1, arose during evolution, we surveyed species of the genus Saccharomyces for glucose-repressed ADH isozymes and for ADR1 homologues. Glucose-repressed ADH isozymes were present in all species of Saccharomyces sensu strictu and also in Saccharomyces kluyveri, the most distant member of the Saccharomyces clade. We cloned and characterized ADH promoters from S. bayanus, S. douglasii, and S. kluyveri. The ADH promoters from S. bayanus and S. douglasii had conserved sequences, including upstream regulatory elements, and an extended polydA tract. The expression of a reporter gene driven by the S. bayanus promoter was glucose-repressed and dependent on the major activator of transcription, ADR1, when it was introduced into S. cerevisiae. One S. kluyveri promoter was also glucose-repressed and ADR1-dependent in S. cerevisiae. The other S. kluyveri ADH promoter was expressed constitutively and was ADR1-independent. Although showing little sequence conservation with the S. cerevisiae ADH2 promoter, the glucose-repressed S. kluyveri promoter contains numerous potential binding sites for Adr1. The glucose-repressed ADH from S. kluyveri is a mitochondrial isozyme most closely related to S. cerevisiae ADHIII. ADR1 homologues from S. douglasii and S. paradoxus contain a trinucleotide repeat encoding polyAsn that is lacking in S. cerevisiae and S. bayanus. No ADR1 homologue could be detected in S. kluyveri, suggesting that the potential for Adr1 regulation may have arisen first, before ADR1 evolved.
KeywordMeSH Terms
Evolution, Molecular
Saccharomyces cerevisiae Proteins
9. Bonnefoy  N, Williams  EH, Costanzo  MC,     ( 2000 )

Highly diverged homologs of Saccharomyces cerevisiae mitochondrial mRNA-specific translational activators have orthologous functions in other budding yeasts.

Genetics 154 (3)
PMID : 10757749  :   PMC  :   PMC1460983    
Abstract >>
Translation of mitochondrially coded mRNAs in Saccharomyces cerevisiae depends on membrane-bound mRNA-specific activator proteins, whose targets lie in the mRNA 5'-untranslated leaders (5'-UTLs). In at least some cases, the activators function to localize translation of hydrophobic proteins on the inner membrane and are rate limiting for gene expression. We searched unsuccessfully in divergent budding yeasts for orthologs of the COX2- and COX3-specific translational activator genes, PET111, PET54, PET122, and PET494, by direct complementation. However, by screening for complementation of mutations in genes adjacent to the PET genes in S. cerevisiae, we obtained chromosomal segments containing highly diverged homologs of PET111 and PET122 from Saccharomyces kluyveri and of PET111 from Kluyveromyces lactis. All three of these genes failed to function in S. cerevisiae. We also found that the 5'-UTLs of the COX2 and COX3 mRNAs of S. kluyveri and K. lactis have little similarity to each other or to those of S. cerevisiae. To determine whether the PET111 and PET122 homologs carry out orthologous functions, we deleted them from the S. kluyveri genome and deleted PET111 from the K. lactis genome. The pet111 mutations in both species prevented COX2 translation, and the S. kluyveri pet122 mutation prevented COX3 translation. Thus, while the sequences of these translational activator proteins and their 5'-UTL targets are highly diverged, their mRNA-specific functions are orthologous.
KeywordMeSH Terms
5' Untranslated Regions
Protein Biosynthesis
RNA
RNA, Fungal
Saccharomyces cerevisiae Proteins
10. Hansen  J, Groth  C,     ( 1999 )

A natural chimeric yeast containing genetic material from three species.

International journal of systematic bacteriology 49 Pt 4 (N/A)
PMID : 10555378  :   DOI  :   10.1099/00207713-49-4-1933    
Abstract >>
The Saccharomyces sp. CID1 isolate (CBS 8614) and several other Saccharomyces sensu stricto yeasts were analysed for their mitochondrial and nuclear genes. The data show that Saccharomyces sp. CID1, found so far only in one location in Europe, is a natural hybrid between three different Saccharomyces yeast species. Two of them, Saccharomyces cerevisiae-like and Saccharomyces bayanus-like, are ubiquitous and contributed parts of the nuclear genome; the third, Saccharomyces sp. IFO 1802-like, which has been found only in Japan, contributed the mitochondrial DNA molecule. These data suggest that the yeast cell is able to accommodate, express and propagate genetic material that originates from different species, and the very existence of the resulting natural hybrids indicates that such hybrids are well adapted to their habitats.
KeywordMeSH Terms
Genes, Fungal
11. Sawyer  SL, Malik  HS,     ( 2006 )

Positive selection of yeast nonhomologous end-joining genes and a retrotransposon conflict hypothesis.

Proceedings of the National Academy of Sciences of the United States of America 103 (47)
PMID : 17101967  :   DOI  :   10.1073/pnas.0605468103     PMC  :   PMC1693795    
Abstract >>
Transposable elements have clearly played a major role in shaping both the size and organization of eukaryotic genomes. However, the evolution of essential genes in core biological processes may also have been shaped by coevolution with these elements. This would be predicted to occur in instances where host proteins are either hijacked for use by mobile elements or recruited to defend against them. To detect such cases, we have used the Saccharomyces cerevisiae-Saccharomyces paradoxus sibling species pair to identify genes that have evolved under positive selection. We identify 72 such genes, which participate in a variety of biological processes but are enriched for genes involved in meiosis and DNA repair by nonhomologous end-joining (NHEJ). We confirm the signature of positive selection acting on NHEJ genes using orthologous sequences from all seven Saccharomyces sensu stricto species. Previous studies have found altered rates of Ty retrotransposition when these NHEJ genes are disrupted. We propose that the evolution of these repair proteins is likely to have been shaped by their interactions with Ty elements. Antagonistic pleiotropy, where critical genes like those involved in DNA repair are also subject to selective pressures imposed by mobile elements, could favor alleles that might be otherwise deleterious for their normal roles related to genome stability.
KeywordMeSH Terms
Genome, Fungal
Retroelements
Selection, Genetic
12. Rainieri  S, Kodama  Y, Kaneko  Y, Mikata  K, Nakao  Y, Ashikari  T,     ( 2006 )

Pure and mixed genetic lines of Saccharomyces bayanus and Saccharomyces pastorianus and their contribution to the lager brewing strain genome.

Applied and environmental microbiology 72 (6)
PMID : 16751504  :   DOI  :   10.1128/AEM.02769-05     PMC  :   PMC1489639    
Abstract >>
The yeast species Saccharomyces bayanus and Saccharomyces pastorianus are of industrial importance since they are involved in the production process of common beverages such as wine and lager beer; however, they contain strains whose variability has been neither fully investigated nor exploited in genetic improvement programs. We evaluated this variability by using PCR-restriction fragment length polymorphism analysis of 48 genes and partial sequences of 16. Within these two species, we identified "pure" strains containing a single type of genome and "hybrid" strains that contained portions of the genomes from the "pure" lines, as well as alleles termed "Lager" that represent a third genome commonly associated with lager brewing strains. The two pure lines represent S. uvarum and S. bayanus, the latter a novel group of strains that may be of use in strain improvement programs. Hybrid lines identified include (i) S. cerevisiae/S. bayanus/Lager, (ii) S. bayanus/S. uvarum/Lager, and (iii) S. cerevisiae/S. bayanus/S. uvarum/Lager. The genome of the lager strains may have resulted from chromosomal loss, replacement, or rearrangement within the hybrid genetic lines. This study identifies brewing strains that could be used as novel genetic sources in strain improvement programs and provides data that can be used to generate a model of how naturally occurring and industrial hybrid strains may have evolved.
KeywordMeSH Terms
Genome, Fungal
13. Liti  G, Barton  DB, Louis  EJ,     ( 2006 )

Sequence diversity, reproductive isolation and species concepts in Saccharomyces.

Genetics 174 (2)
PMID : 16951060  :   DOI  :   10.1534/genetics.106.062166     PMC  :   PMC1602076    
Abstract >>
Using the biological species definition, yeasts of the genus Saccharomyces sensu stricto comprise six species and one natural hybrid. Previous work has shown that reproductive isolation between the species is due primarily to sequence divergence acted upon by the mismatch repair system and not due to major gene differences or chromosomal rearrangements. Sequence divergence through mismatch repair has also been shown to cause partial reproductive isolation among populations within a species. We have surveyed sequence variation in populations of Saccharomyces sensu stricto yeasts and measured meiotic sterility in hybrids. This allows us to determine the divergence necessary to produce the reproductive isolation seen among species. Rather than a sharp transition from fertility to sterility, which may have been expected, we find a smooth monotonic relationship between diversity and reproductive isolation, even as far as the well-accepted designations of S. paradoxus and S. cerevisiae as distinct species. Furthermore, we show that one species of Saccharomyces--S. cariocanus--differs from a population of S. paradoxus by four translocations, but not by sequence. There is molecular evidence of recent introgression from S. cerevisiae into the European population of S. paradoxus, supporting the idea that in nature the boundary between these species is fuzzy.
KeywordMeSH Terms
Base Sequence
Genetic Speciation
Genetic Variation
14. Hall  C, Brachat  S, Dietrich  FS,     ( 2005 )

Contribution of horizontal gene transfer to the evolution of Saccharomyces cerevisiae.

Eukaryotic cell 4 (1��6��)
PMID : 15947202  :   DOI  :   10.1128/EC.4.6.1102-1115.2005     PMC  :   PMC1151995    
Abstract >>
The genomes of the hemiascomycetes Saccharomyces cerevisiae and Ashbya gossypii have been completely sequenced, allowing a comparative analysis of these two genomes, which reveals that a small number of genes appear to have entered these genomes as a result of horizontal gene transfer from bacterial sources. One potential case of horizontal gene transfer in A. gossypii and 10 potential cases in S. cerevisiae were identified, of which two were investigated further. One gene, encoding the enzyme dihydroorotate dehydrogenase (DHOD), is potentially a case of horizontal gene transfer, as shown by sequencing of this gene from additional bacterial and fungal species to generate sufficient data to construct a well-supported phylogeny. The DHOD-encoding gene found in S. cerevisiae, URA1 (YKL216W), appears to have entered the Saccharomycetaceae after the divergence of the S. cerevisiae lineage from the Candida albicans lineage and possibly since the divergence from the A. gossypii lineage. This gene appears to have come from the Lactobacillales, and following its acquisition the endogenous eukaryotic DHOD gene was lost. It was also shown that the bacterially derived horizontally transferred DHOD is required for anaerobic synthesis of uracil in S. cerevisiae. The other gene discussed in detail is BDS1, an aryl- and alkyl-sulfatase gene of bacterial origin that we have shown allows utilization of sulfate from several organic sources. Among the eukaryotes, this gene is found in S. cerevisiae and Saccharomyces bayanus and appears to derive from the alpha-proteobacteria.
KeywordMeSH Terms
Evolution, Molecular
Gene Transfer, Horizontal
Genes, Fungal
15. Thomson  JM, Gaucher  EA, Burgan  MF, De Kee  DW, Li  T, Aris  JP, Benner  SA,     ( 2005 )

Resurrecting ancestral alcohol dehydrogenases from yeast.

Nature genetics 37 (6)
PMID : 15864308  :   DOI  :   10.1038/ng1553     PMC  :   PMC3618678    
Abstract >>
Modern yeast living in fleshy fruits rapidly convert sugars into bulk ethanol through pyruvate. Pyruvate loses carbon dioxide to produce acetaldehyde, which is reduced by alcohol dehydrogenase 1 (Adh1) to ethanol, which accumulates. Yeast later consumes the accumulated ethanol, exploiting Adh2, an Adh1 homolog differing by 24 (of 348) amino acids. As many microorganisms cannot grow in ethanol, accumulated ethanol may help yeast defend resources in the fruit. We report here the resurrection of the last common ancestor of Adh1 and Adh2, called Adh(A). The kinetic behavior of Adh(A) suggests that the ancestor was optimized to make (not consume) ethanol. This is consistent with the hypothesis that before the Adh1-Adh2 duplication, yeast did not accumulate ethanol for later consumption but rather used Adh(A) to recycle NADH generated in the glycolytic pathway. Silent nucleotide dating suggests that the Adh1-Adh2 duplication occurred near the time of duplication of several other proteins involved in the accumulation of ethanol, possibly in the Cretaceous age when fleshy fruits arose. These results help to connect the chemical behavior of these enzymes through systems analysis to a time of global ecosystem change, a small but useful step towards a planetary systems biology.
KeywordMeSH Terms
Biological Evolution
16. Nguyen  HV, Gaillardin  C,     ( 2005 )

Evolutionary relationships between the former species Saccharomyces uvarum and the hybrids Saccharomyces bayanus and Saccharomyces pastorianus; reinstatement of Saccharomyces uvarum (Beijerinck) as a distinct species.

FEMS yeast research 5 (4��5��)
PMID : 15691752  :   DOI  :   10.1016/j.femsyr.2004.12.004    
Abstract >>
Analysis of the nucleotide sequence of the GDH1 homologues from Saccharomyces bayanus strain CBS 380T and S. pastorianus strains showed that they share an almost identical sequence, SuGDH1*, which is a diverged form of the SuGDH1 from the type strain of the former species S. uvarum, considered as synonym of S. bayanus. SuGDH1* is close to but differs from SuGDH1 by the accumulation of a high number of neutral substitutions designated as Multiple Neutral Mutations Accumulation (MNMA). Further analysis carried out with three other markers, BAP2, HO and MET2 showed that they have also diverged from their S. uvarum counterparts by MNMA. S. bayanus CBS 380T is placed between S. uvarum and S. pastorianus sharing MET2, CDC91 sequences with the former and BAP2, GDH1, HO sequences with the latter. S. bayanus CBS 380T has been proposed to be a S. uvarum/S. cerevisiae hybrid and this proposal is confirmed by the presence in its genome a S. cerevisiae SUC4 gene. Strain S. bayanus CBS 380T, with a composite genome, is genetically isolated from strains of the former S. uvarum species, thus justifying the reinstatement of S. uvarum as a distinct species.
KeywordMeSH Terms
Evolution, Molecular
Recombination, Genetic
17. Kurtzman  CP, Robnett  CJ, Ward  JM, Brayton  C, Gorelick  P, Walsh  TJ,     ( 2005 )

Multigene phylogenetic analysis of pathogenic candida species in the Kazachstania (Arxiozyma) telluris complex and description of their ascosporic states as Kazachstania bovina sp. nov., K. heterogenica sp. nov., K. pintolopesii sp. nov., and K. slooffiae sp. nov.

Journal of clinical microbiology 43 (1��1��)
PMID : 15634957  :   DOI  :   10.1128/JCM.43.1.101-111.2005     PMC  :   PMC540161    
Abstract >>
A yeast causing widespread infection of laboratory mice was identified from 26S rRNA gene sequences as Candida pintolopesii. To determine the relationship of C. pintolopesii with other members of the Kazachstania (Arxiozyma) telluris species complex, nucleotide sequences from domains 1 and 2 of the 26S rRNA gene, the mitochondrial small-subunit rRNA gene, and the RNA polymerase II gene were phylogenetically analyzed. That analysis resolved the 48 strains examined into five closely related species: K. telluris, Candida bovina, C. pintolopesii, Candida slooffiae, and a previously unknown species. One or more strains of each of the last four species formed an ascosporic state much like that of K. telluris. To place these ascosporogenous strains taxonomically, it is proposed that they be assigned to the teleomorphic genus Kazachstania as K. bovina (type strain NRRL Y-7283, CBS 9732, from the nasal passage of a pigeon), K. heterogenica (type strain NRRL Y-27499, CBS 2675, from rodent feces), K. pintolopesii (type strain NRRL Y-27500, CBS 2985, from the peritoneal fluid of a dead guinea pig), and K. slooffiae (type strain NRRL YB-4349, CBS 9733, from the cecum of a horse). On the basis of multigene sequence analyses, K. heterogenica appears to be a hybrid of K. pintolopesii and a presently unknown species. With the exception of K. bovina, the phylogenetically defined species show a moderate degree of host specificity.
KeywordMeSH Terms
Phylogeny
18. Marinangeli  P, Clementi  F, Ciani  M, Mannazzu  I,     ( 2004 )

SED1 polymorphism within the genus Saccharomyces.

FEMS yeast research 5 (1)
PMID : 15381124  :   DOI  :   10.1016/j.femsyr.2004.07.001    
Abstract >>
The SED1 gene is characterised by abundant length and sequence polymorphisms within the species Saccharomyces cerevisiae, due to the expansion and contraction of minisatellite-like sequences located within the ORF. A survey of the SED1 ORFs of 26 yeasts ascribed to the species S. cerevisiae, S. bayanus, S. pastorianus, S. paradoxus, S. cariocanus, S. kudriavzevii and S. mikatae revealed SED1 gene length and sequence variations between the species of the genus. Moreover, results obtained by Neighbour-Joining analysis of a dataset comprising the partial predicted amino acid sequences of SED1 ORFs agreed with the phylogenetic relationships of the seven species. Thus, the SED1 gene may represent a further molecular target for the identification of Saccharomyces isolates.
KeywordMeSH Terms
19. Johnson  LJ, Koufopanou  V, Goddard  MR, Hetherington  R, Schäfer  SM, Burt  A,     ( 2004 )

Population genetics of the wild yeast Saccharomyces paradoxus.

Genetics 166 (1)
PMID : 15020405  :   PMC  :   PMC1470673    
Abstract >>
Saccharomyces paradoxus is the closest known relative of the well-known S. cerevisiae and an attractive model organism for population genetic and genomic studies. Here we characterize a set of 28 wild isolates from a 10-km(2) sampling area in southern England. All 28 isolates are homothallic (capable of mating-type switching) and wild type with respect to nutrient requirements. Nine wild isolates and two lab strains of S. paradoxus were surveyed for sequence variation at six loci totaling 7 kb, and all 28 wild isolates were then genotyped at seven polymorphic loci. These data were used to calculate nucleotide diversity and number of segregating sites in S. paradoxus and to investigate geographic differentiation, population structure, and linkage disequilibrium. Synonymous site diversity is approximately 0.3%. Extensive incompatibilities between gene genealogies indicate frequent recombination between unlinked loci, but there is no evidence of recombination within genes. Some localized clonal growth is apparent. The frequency of outcrossing relative to inbreeding is estimated at 1.1% on the basis of heterozygosity. Thus, all three modes of reproduction known in the lab (clonal replication, inbreeding, and outcrossing) have been important in molding genetic variation in this species.
KeywordMeSH Terms
20. Libkind  D, Hittinger  CT, Valério  E, Gonçalves  C, Dover  J, Johnston  M, Gonçalves  P, Sampaio  JP,     ( 2011 )

Microbe domestication and the identification of the wild genetic stock of lager-brewing yeast.

Proceedings of the National Academy of Sciences of the United States of America 108 (35)
PMID : 21873232  :   DOI  :   10.1073/pnas.1105430108     PMC  :   PMC3167505    
Abstract >>
Domestication of plants and animals promoted humanity's transition from nomadic to sedentary lifestyles, demographic expansion, and the emergence of civilizations. In contrast to the well-documented successes of crop and livestock breeding, processes of microbe domestication remain obscure, despite the importance of microbes to the production of food, beverages, and biofuels. Lager-beer, first brewed in the 15th century, employs an allotetraploid hybrid yeast, Saccharomyces pastorianus (syn. Saccharomyces carlsbergensis), a domesticated species created by the fusion of a Saccharomyces cerevisiae ale-yeast with an unknown cryotolerant Saccharomyces species. We report the isolation of that species and designate it Saccharomyces eubayanus sp. nov. because of its resemblance to Saccharomyces bayanus (a complex hybrid of S. eubayanus, Saccharomyces uvarum, and S. cerevisiae found only in the brewing environment). Individuals from populations of S. eubayanus and its sister species, S. uvarum, exist in apparent sympatry in Nothofagus (Southern beech) forests in Patagonia, but are isolated genetically through intrinsic postzygotic barriers, and ecologically through host-preference. The draft genome sequence of S. eubayanus is 99.5% identical to the non-S. cerevisiae portion of the S. pastorianus genome sequence and suggests specific changes in sugar and sulfite metabolism that were crucial for domestication in the lager-brewing environment. This study shows that combining microbial ecology with comparative genomics facilitates the discovery and preservation of wild genetic stocks of domesticated microbes to trace their history, identify genetic changes, and suggest paths to further industrial improvement.
KeywordMeSH Terms
21. Huang  CH, Lee  FL, Tai  CJ,     ( 2009 )

The beta-tubulin gene as a molecular phylogenetic marker for classification and discrimination of the Saccharomyces sensu stricto complex.

Antonie van Leeuwenhoek 95 (2)
PMID : 19112604  :   DOI  :   10.1007/s10482-008-9296-1    
Abstract >>
The Saccharomyces sensu stricto complex comprises seven very closely related species. In this study, we compared the use of two different phylogenetic markers, the 26S rDNA and beta-tubulin genes, for discriminating phylogenetic relationships among Saccharomyces sensu stricto strains using sequencing as well as RFLP methods. The average sequence similarity for the beta-tubulin gene (90.0%) among seven strains was significantly less than that for 26S rDNA (98.6%). This result demonstrates that beta-tubulin gene sequences provided higher resolution than 26S rDNA sequences. Species-specific restriction profiles of the Saccharomyces strains were obtained by cutting them with the Tsp509I enzyme. Our data indicate that phylogenetic relationships between these strains are best resolved using sequencing or RFLP analysis of the beta-tubulin gene.
KeywordMeSH Terms
22. Lee  HY, Chou  JY, Cheong  L, Chang  NH, Yang  SY, Leu  JY,     ( 2008 )

Incompatibility of nuclear and mitochondrial genomes causes hybrid sterility between two yeast species.

Cell 135 (6)
PMID : 19070577  :   DOI  :   10.1016/j.cell.2008.10.047    
Abstract >>
Hybrids between species are usually unviable or sterile. One possible mechanism causing reproductive isolation is incompatibility between genes from different species. These "speciation" genes are interacting components that cannot function properly when mixed with alleles from other species. To test whether such genes exist in two closely related yeast species, we constructed hybrid lines in which one or two chromosomes were derived from Saccharomyces bayanus, and the rest were from Saccharomyces cerevisiae. We found that the hybrid line with Chromosome 13 substitution was completely sterile and identified Aep2, a mitochondrial protein encoded on Chromosome 13, to cause the sporulation defect as S. bayanus AEP2 is incompatible with S. cerevisiae mitochondria. This is caused by the inability of S. bayanus Aep2 protein to regulate the translation of the S. cerevisiae OLI1 mRNA. We speculate that AEP2 and OLI1 have evolved during the adaptation of S. bayanus to nonfermentable carbon sources, thereby driving speciation.
KeywordMeSH Terms
23. Gallagher  JE, Babiarz  JE, Teytelman  L, Wolfe  KH, Rine  J,     ( 2009 )

Elaboration, diversification and regulation of the Sir1 family of silencing proteins in Saccharomyces.

Genetics 181 (4)
PMID : 19171939  :   DOI  :   10.1534/genetics.108.099663     PMC  :   PMC2666514    
Abstract >>
Heterochromatin renders domains of chromosomes transcriptionally silent and, due to clonal variation in its formation, can generate heritably distinct populations of genetically identical cells. Saccharomyces cerevisiae's Sir1 functions primarily in the establishment, but not the maintenance, of heterochromatic silencing at the HMR and HML loci. In several Saccharomyces species, we discovered multiple paralogs of Sir1, called Kos1-Kos4 (Kin of Sir1). The Kos and Sir1 proteins contributed partially overlapping functions to silencing of both cryptic mating loci in S. bayanus. Mutants of these paralogs reduced silencing at HML more than at HMR. Most genes of the SIR1 family were located near telomeres, and at least one paralog was regulated by telomere position effect. In S. cerevisiae, Sir1 is recruited to the silencers at HML and HMR via its ORC interacting region (OIR), which binds the bromo adjacent homology (BAH) domain of Orc1. Zygosaccharomyces rouxii, which diverged from Saccharomyces after the appearance of the silent mating cassettes, but before the whole-genome duplication, contained an ortholog of Kos3 that was apparently the archetypal member of the family, with only one OIR. In contrast, a duplication of this domain was present in all orthologs of Sir1, Kos1, Kos2, and Kos4. We propose that the functional specialization of Sir3, itself a paralog of Orc1, as a silencing protein was facilitated by the tandem duplication of the OIR domain in the Sir1 family, allowing distinct Sir1-Sir3 and Sir1-Orc1 interactions through OIR-BAH domain interactions.
KeywordMeSH Terms
Gene Expression Regulation, Fungal
Gene Silencing
24. Rainieri  S, Kodama  Y, Nakao  Y, Pulvirenti  A, Giudici  P,     ( 2008 )

The inheritance of mtDNA in lager brewing strains.

FEMS yeast research 8 (4)
PMID : 18318709  :   DOI  :   10.1111/j.1567-1364.2008.00363.x    
Abstract >>
In this work, we compared the mtDNA of a number of interspecific Saccharomyces hybrids (Saccharomyces cerevisiae x Saccharomyces uvarum and S. cerevisiae x Saccharomyces bayanus) to the mtDNA of 22 lager brewing strains that are thought to be the result of a natural hybridization between S. cerevisiae and another Saccharomyces yeast, possibly belonging to the species S. bayanus. We detected that in hybrids constructed in vitro, the mtDNA could be inherited from either parental strain. Conversely, in the lager strains tested, the mtDNA was never of the S. cerevisiae type. Moreover, the nucleotide sequence of lager brewing strains COXII gene was identical to S. bayanus strain NBRC 1948 COXII gene. MtDNA restriction analysis carried out with three enzymes confirmed this finding. However, restriction analysis with a fourth enzyme (AvaI) provided restriction patterns for lager strains that differed from those of S. bayanus strain NBRC 1948. Our results raise the hypothesis that the human-driven selection carried out on existing lager yeasts has favored only those bearing optimal fermentation characteristics at low temperatures, which harbor the mtDNA of S. bayanus.
KeywordMeSH Terms
Industrial Microbiology
25. Séraphin  B, Simon  M, Faye  G,     ( 1987 )

The mitochondrial reading frame RF3 is a functional gene in Saccharomyces uvarum.

The Journal of biological chemistry 262 (21)
PMID : 2440860  :  
Abstract >>
The yeast mitochondrial genome contains three reading frames, RF1, RF2, and RF3, which are related to the group I maturases, though they are not intronic sequences. In the Saccharomyces cerevisiae strain D273-10B/A, these reading frames are interrupted by G + C-rich sequences (GC clusters) which break the frames. In the present work we described a Saccharomyces uvarum strain which possesses a RF3 continuous sequence devoid of GC clusters. Moreover, our results strongly suggest that in the same strain RF2 and RF1 are also continuous sequences. As all three RFs belong to transcription units which are highly expressed, it is most reasonable to assume that RF1, RF2, and RF3 are functional genes. Furthermore, we have discovered a rule which seems to explain the transposition of GC clusters, considered as mobile elements, in the mitochondrial genome.
KeywordMeSH Terms
Deoxyribonucleases, Type II Site-Specific
Genes
26. Bateman  DA, Wickner  RB,     ( 2012 )

[PSI+] Prion transmission barriers protect Saccharomyces cerevisiae from infection: intraspecies 'species barriers'.

Genetics 190 (2)
PMID : 22095075  :   DOI  :   10.1534/genetics.111.136655     PMC  :   PMC3276615    
Abstract >>
[PSI+] is a prion of Sup35p, an essential translation termination and mRNA turnover factor. The existence of lethal [PSI+] variants, the absence of [PSI+] in wild strains, the mRNA turnover function of the Sup35p prion domain, and the stress reaction to prion infection suggest that [PSI+] is a disease. Nonetheless, others have proposed that [PSI+] and other yeast prions benefit their hosts. We find that wild Saccharomyces cerevisiae strains are polymorphic for the sequence of the prion domain and particularly in the adjacent M domain. Here we establish that these variations within the species produce barriers to prion transmission. The barriers are partially asymmetric in some cases, and evidence for variant specificity in barriers is presented. We propose that, as the PrP 129M/V polymorphism protects people from Creutzfeldt-Jakob disease, the Sup35p polymorphisms were selected to protect yeast cells from prion infection. In one prion incompatibility group, the barrier is due to N109S in the Sup35 prion domain and several changes in the middle (M) domain, with either the single N109S mutation or the group of M changes (without the N109S) producing a barrier. In another, the barrier is due to a large deletion in the repeat domain. All are outside the region previously believed to determine transmission compatibility. [SWI+], a prion of the chromatin remodeling factor Swi1p, was also proposed to benefit its host. We find that none of 70 wild strains carry this prion, suggesting that it is not beneficial.
KeywordMeSH Terms
27.     ( 1994 )

Saccharomyces carlsbergensis contains two functional MET2 alleles similar to homologues from S. cerevisiae and S. monacensis.

Gene 140 (1)
PMID : 8125336  :   DOI  :   10.1016/0378-1119(94)90727-7    
Abstract >>
The brewing yeast, Saccharomyces, carlsbergensis, is allopolyploid, derived from two diverged genomes. To obtain information about the possible origin of this yeast, we cloned two different S. carlsbergensis MET2 genes (encoding homoserine acetyltransferase). One has a nucleotide (nt) sequence identical or very similar to MET2 of Saccharomyces cerevisiae. The other has a different sequence, but was functional in S. cerevisiae. This allele was sequenced and revealed a coding region of 486 amino acids (aa). The nt sequence of the coding region showed 82% homology to S. cerevisiae MET2, while the derived aa sequences were 94% identical. Hybridization experiments to genomic DNA of different yeast strains revealed that the divergent MET2 gene had higher sequence homology to segments from type strains of S. monacensis, S. bayanus and S. uvarum than to MET2 from S. cerevisiae. Sequencing of 330 bp of a PCR-amplified fragment of MET2 from these organisms shows that the non-S. cerevisiae-like sequence from S. carlsbergensis is identical to the corresponding sequence in S. monacensis, while it is 93% homologous with S. bayanus and S. uvarum. Our results are consistent with the proposal that S. carlsbergensis originated as a hybrid between S. monacensis and S. cerevisiae. The complete identity of the MET2 fragments from S. monacensis and the S. carlsbergensis-specific MET2 allele suggests that the hybridization must have been a quite recent event.
KeywordMeSH Terms
Alleles
Genes, Fungal
28.     ( 1998 )

New hybrids between Saccharomyces sensu stricto yeast species found among wine and cider production strains.

Applied and environmental microbiology 64 (10)
PMID : 9758815  :   PMC  :   PMC106574    
Abstract >>
Two yeast isolates, a wine-making yeast first identified as a Mel+ strain (ex. S. uvarum) and a cider-making yeast, were characterized for their nuclear and mitochondrial genomes. Electrophoretic karyotyping analyses, restriction fragment length polymorphism maps of PCR-amplified MET2 gene fragments, and the sequence analysis of a part of the two MET2 gene alleles found support the notion that these two strains constitute hybrids between Saccharomyces cerevisiae and Saccharomyces bayanus. The two hybrid strains had completely different restriction patterns of mitochondrial DNA as well as different sequences of the OLI1 gene. The sequence of the OLI1 gene from the wine hybrid strain appeared to be the same as that of the S. cerevisiae gene, whereas the OLI1 gene of the cider hybrid strain is equally divergent from both putative parents, S. bayanus and S. cerevisiae. Some fermentative properties were also examined, and one phenotype was found to reflect the hybrid nature of these two strains. The origin and nature of such hybridization events are discussed.
KeywordMeSH Terms
29.     ( 1998 )

Evolution of mitochondrial DNA in yeast: gene order and structural organization of the mitochondrial genome of Saccharomyces uvarum.

Current genetics 33 (1)
PMID : 9472080  :  
Abstract >>
We have determined the size, the restriction map and the gene order of the mitochondrial genome of the yeast Saccharomyces uvarum. Sequence analysis of the mitochondrial COXII gene confirmed the position of this yeast in the Saccharomyces cerevisiae-like group, near Saccharomyces cerevisiae and Saccharomyces douglasii. Most mitochondrial genes have been positioned on this approximately 57-kb long genome and three regions containing putative replication origins have been identified. The gene order of S. uvarum suggests that the mitochondrial genome of the S.cerevisiae-like yeasts could have evolved from an ancestral molecule, similar to that of S. uvarum, through specific genome rearrangements.
KeywordMeSH Terms
Evolution, Molecular
Genes, Fungal
Genome, Fungal
Restriction Mapping

331, Shih-Pin Rd., Hsinchu 30062, Taiwan

Phone: +886-3-5223191

E-mail: bcrcweb@firdi.org.tw

web maintainance: +886-3-5223191 ext 593

Copyright © 2018.BCRC All rights reserved.The duplication or use of information and data such as texts or images or any linkage the website at the "bcrc.firdi.org.tw" is only permitted with the indication of the source or with prior approval by the BCRC(Bioresource Collection and Research Center).