BCRC Strain Collection Catalog & Shopping Cart

  Home / BCRC Content / 22084 / 

Return

  Research Article

The information shown in this page was generated using the cross-referenced linkage within public domain database between their strains and BCRC related strains. Usually the information provided from public domain databases varies with different confidences and errors, BCRC provides the related information here at best effort, but BCRC doesn't take the responsibility about the correctness of the information provided here.

1. Daniel  HM, Sorrell  TC, Meyer  W,     ( 2001 )

Partial sequence analysis of the actin gene and its potential for studying the phylogeny of Candida species and their teleomorphs.

International journal of systematic and evolutionary microbiology 51 (Pt 4)
PMID : 11491363  :   DOI  :   10.1099/00207713-51-4-1593    
Abstract >>
The actin gene has been studied as a potential phylogenetic marker for selected members of the anamorphic genus Candida and seven related teleomorphic genera (Debaryomyces, Issatchenkia, Kluyveromyces, Saccharomyces and Pichia from the Saccharomycetaceae; Clavispora and Metschnikowia from the Metschnikowiaceae). The nucleotide sequences of 36 fungal taxa were analysed with respect to their molecular evolution and phylogenetic relationships. A total of 460 bp (47%) of the coding 979 bp were variable and 396 bp (40%) of these were found to be phylogenetically informative. Further analysis of the sequences showed that the genic G+C contents were higher than the nuclear G+C contents for most of the taxa. A strong positive correlation was found between G+C content over all codon positions and third positions. First and second codon positions were considered to be independent of the genic G+C content. The expected transition/transversion bias was detected only for third positions. Pairwise comparisons of transitional and transversional changes (substitutions) with total percentage sequence divergences revealed that the third position transitions showed no saturation for ingroup comparisons. A specific weighting scheme was set up, combining codon-position weights with change-frequency weights to enable the inclusion of distant outgroup taxa. Parsimony analyses of the investigated taxa showed four groups, three of which corresponded to major clusters that had been established previously in Candida by rDNA analysis. Interrelationships among the species groups in this heterogeneous anamorphic genus were determined. The polyphyletic origin of the selected Candida species and their close associations with several ascomycete genera were verified and known anamorph/teleomorph pairs confirmed. The actin gene was established as a valuable phylogenetic marker with the particular advantage of an unambiguous alignment.
KeywordMeSH Terms
Genes, Fungal
2. Molnár  O, Prillinger  H,     ( 2005 )

Analysis of yeast isolates related to Metschnikowia pulcherrima using the partial sequences of the large subunit rDNA and the actin gene; description of Metschnikowia andauensis sp. nov.

Systematic and applied microbiology 28 (8)
PMID : 16261861  :   DOI  :   10.1016/j.syapm.2005.05.009    
Abstract >>
Thirty-two yeast isolates were cultured from guts or excrements of three different pests of corn or from the stem of healthy corn. The strains were analyzed using MSP-PCR (micro/minisatellite-primed polymerase chain reaction), sequences of the D1/D2 region of the large subunit rDNA and a 979 bp long part of the actin gene (act-1). They seem to belong to three groups that are all sister groups of Metschnikowia pulcherrima, M. fructicola and M. chrysoperlae. A new species, Metschnikowia andauensis (HA 1657T) is described. In contrast to M. pulcherrima and M. fructicola, M. andauensis is well separated in the act-1 phylogenetic tree too.
KeywordMeSH Terms
3. Diezmann  S, Cox  CJ, Schönian  G, Vilgalys  RJ, Mitchell  TG,     ( 2004 )

Phylogeny and evolution of medical species of Candida and related taxa: a multigenic analysis.

Journal of clinical microbiology 42 (12)
PMID : 15583292  :   DOI  :   10.1128/JCM.42.12.5624-5635.2004     PMC  :   PMC535224    
Abstract >>
Hemiascomycetes are species of yeasts within the order Saccharomycetales. The order encompasses disparate genera with a variety of life styles, including opportunistic human pathogens (e.g., Candida albicans), plant pathogens (e.g., Eremothecium gossypii), and cosmopolitan yeasts associated with water and decaying vegetation. To analyze the phylogeny of medically important species of yeasts, we selected 38 human pathogenic and related strains in the order Saccharomycetales. The DNA sequences of six nuclear genes were analyzed by maximum likelihood and Bayesian phylogenetic methods. The maximum likelihood analysis of the combined data for all six genes resolved three major lineages with significant support according to Bayesian posterior probability. One clade was mostly comprised of pathogenic species of Candida. Another major group contained members of the family Metschnikowiaceae as a monophyletic group, three species of Debaryomyces, and strains of Candida guilliermondii. The third clade consisted exclusively of species of the family Saccharomycetaceae. Analysis of the evolution of key characters indicated that both codon reassignment and coenzyme Q(9) likely had single origins with multiple losses. Tests of correlated character evolution revealed that these two traits evolved independently.
KeywordMeSH Terms
Evolution, Molecular
Phylogeny
4. Tsui  CK, Daniel  HM, Robert  V, Meyer  W,     ( 2008 )

Re-examining the phylogeny of clinically relevant Candida species and allied genera based on multigene analyses.

FEMS yeast research 8 (4)
PMID : 18248416  :   DOI  :   10.1111/j.1567-1364.2007.00342.x    
Abstract >>
Yeasts of the artificial genus Candida include plant endophytes, insect symbionts, and opportunistic human pathogens. Phylogenies based on rRNA gene and actin sequences confirmed that the genus is not monophyletic, and the relationships among Candida species and allied teleomorph genera are not clearly resolved. Protein-coding genes have been useful to resolve taxonomic positions among a broad range of fungi. Over 70 taxa of the genus Candida and its allied sexually reproducing genera were therefore selected, and their phylogenetic relationships were investigated using nuclear sequences of the largest subunit and second largest subunit of RNA polymerase II gene, actin, the second subunit of the mitochondrial cytochrome oxidase gene, and D1/D2 LSU rRNA gene. The DNA sequences were analysed by maximum parsimony and Bayesian inference, resulting in the recognition of six major phylogenetic groups (A-F). Group A contains six facultative pathogenic Candida species, which seem to have derived from nonpathogenic species, while Group B contains species of Clavispora, Metschnikowia, and Pichia guilliermondii. Species of Debaryomyces form an independent group C that is related to groups A and B. Pichia fermentans and other environmental species are concentrated in Group D. Group E, containing Pichia anomala, may be a sibling to group F, which is represented by the Saccharomyces species complex.
KeywordMeSH Terms
Phylogeny
5. Kurtzman  CP, Robnett  CJ, Basehoar  E, Ward  TJ,     ( 2018 )

Four new species of Metschnikowia and the transfer of seven Candida species to Metschnikowia and Clavispora as new combinations.

Antonie van Leeuwenhoek 111 (11)
PMID : 29754318  :   DOI  :   10.1007/s10482-018-1095-8    
Abstract >>
From comparisons of ITS1-5.8S-ITS2 and gene sequences for nuclear D1/D2 LSU rRNA, nuclear SSU (18S) rRNA, translation elongation factor 1-�\ (EF1-�\) and RNA polymerase II subunit 2 (RPB2), the following four new ascosporogenous yeast species were resolved and are described as Metschnikowia anglica (NRRL Y-7298T [type strain], CBS 15342, MycoBank MB 823167), Metschnikowia leonuri (NRRL Y-6546T, CBS 15341, MB 823166), Metschnikowia peoriensis (NRRL Y-5942T, CBS 15345, MB 823164) and Metschnikowia rubicola (NRRL Y-6064T, CBS 15344, MB 823165). The following six species of Candida are members of the Metschnikowia clade and are proposed for transfer to Metschnikowia as new combinations: Candida chrysomelidarum (NRRL Y-27749T, CBS 9904, MB 823223), Candida gelsemii (NRRL Y-48212T, CBS 10509, MB 823192), Candida kofuensis (NRRL Y-27226T, CBS 8058, MB 823195), Candida picachoensis (NRRL Y-27607T, CBS 9804, MB 823197), Candida pimensis (NRRL Y-27619T, CBS 9805, MB 823205) and Candida rancensis (NRRL Y-48702T, CBS 8174, MB 823224). Candida fructus (NRRL Y-17072T, CBS 6380, MB 823206) is transferred to Clavispora as a new combination, and Candida musae is shown to be a synonym of C. fructus. Apparent multiple alleles for ITS, D1/D2, EF1-�\ and RPB2 were detected in strains of some species.
KeywordMeSH Terms
11 new taxa
Candida
Clavispora
Metschnikowia
Multiple alleles
New combinations
11 new taxa
Candida
Clavispora
Metschnikowia
Multiple alleles
New combinations
11 new taxa
Candida
Clavispora
Metschnikowia
Multiple alleles
New combinations
11 new taxa
Candida
Clavispora
Metschnikowia
Multiple alleles
New combinations
11 new taxa
Candida
Clavispora
Metschnikowia
Multiple alleles
New combinations
11 new taxa
Candida
Clavispora
Metschnikowia
Multiple alleles
New combinations
11 new taxa
Candida
Clavispora
Metschnikowia
Multiple alleles
New combinations
11 new taxa
Candida
Clavispora
Metschnikowia
Multiple alleles
New combinations
11 new taxa
Candida
Clavispora
Metschnikowia
Multiple alleles
New combinations
11 new taxa
Candida
Clavispora
Metschnikowia
Multiple alleles
New combinations
11 new taxa
Candida
Clavispora
Metschnikowia
Multiple alleles
New combinations
11 new taxa
Candida
Clavispora
Metschnikowia
Multiple alleles
New combinations
6.     ( 2013 )

Phylogenetic analysis of the angiosperm-floricolous insect-yeast association: have yeast and angiosperm lineages co-diversified?

Molecular phylogenetics and evolution 68 (2)
PMID : 23583418  :   DOI  :   10.1016/j.ympev.2013.04.003    
Abstract >>
Metschnikowia (Saccharomycetales, Metschnikowiaceae/Metschnikowia clade) is an ascomycetous yeast genus whose species are associated mostly with angiosperms and their insect pollinators over all continents. The wide distribution of the genus, its association with angiosperm flowers, and the fact that it includes some of the best-studied yeasts in terms of biogeography and ecology make Metschnikowia an excellent group to investigate a possible co-radiation with angiosperm lineages. We performed phylogenetic analyses implementing Bayesian inference and likelihood methods, using a concatenated matrix (?2.6 Kbp) of nuclear DNA (ACT1, 1st and 2nd codon positions of EF2, Mcm7, and RPB2) sequences. We included 77 species representing approximately 90% of the species in the family. Bayesian and parsimony methods were used to perform ancestral character reconstructions within Metschnikowia in three key morphological characters. Patterns of evolution of yeast habitats and divergence times were explored in the Metschnikowia clade lineages with the purpose of inferring the time of origin of angiosperm-associated habitats within Metschnikowiaceae. This paper presents the first phylogenetic hypothesis to include nearly all known species in the family. The polyphyletic nature of Clavispora was confirmed and Metschnikowia species (and their anamorphs) were shown to form two groups: one that includes mostly floricolous, insect-associated species distributed in mostly tropical areas (the large-spored Metschnikowia clade and relatives) and another that comprises more heterogeneous species in terms of habitat and geographical distribution. Reconstruction of character evolution suggests that sexual characters (ascospore length, number of ascospores, and ascus formation) evolved multiple times within Metschnikowia. Complex and dynamic habitat transitions seem to have punctuated the course of evolution of the Metschnikowiaceae with repeated and independent origins of angiosperm-associated habitats. The origin of the family is placed in the Late Cretaceous (71.7 Ma) with most extant species arising from the Early Eocene. Therefore, the Metschnikowiaceae likely radiated long after the Mid-Cretaceous radiations of angiosperms and their diversification seems to be driven by repeated radiation on a pre-existing diverse resource.
KeywordMeSH Terms
Phylogeny

331, Shih-Pin Rd., Hsinchu 30062, Taiwan

Phone: +886-3-5223191

E-mail: bcrcweb@firdi.org.tw

web maintainance: +886-3-5223191 ext 593

Copyright © 2018.BCRC All rights reserved.The duplication or use of information and data such as texts or images or any linkage the website at the "bcrc.firdi.org.tw" is only permitted with the indication of the source or with prior approval by the BCRC(Bioresource Collection and Research Center).