BCRC Strain Collection Catalog & Shopping Cart

  Home / BCRC Content / 80335 / 

Return

  Research Article

The information shown in this page was generated using the cross-referenced linkage within public domain database between their strains and BCRC related strains. Usually the information provided from public domain databases varies with different confidences and errors, BCRC provides the related information here at best effort, but BCRC doesn't take the responsibility about the correctness of the information provided here.

1. Nieto Lozano  JC, Meyer  JN, Sletten  K, Peláz  C, Nes  IF,     ( 1992 )

Purification and amino acid sequence of a bacteriocin produced by Pediococcus acidilactici.

Journal of general microbiology 138 (9)
PMID : 1402795  :   DOI  :   10.1099/00221287-138-9-1985    
Abstract >>
A bacteriocin produced by Pediococcus acidilactici has been purified to homogeneity by a rapid and simple four-step purification procedure which includes ammonium sulphate precipitation, chromatography with a cation-exchanger and Octyl Sepharose, and reverse-phase chromatography. The purification resulted in an approximately 80,000-fold increase in the specific activity and about a 6-fold increase in the total activity. The amino acid composition and sequencing data indicated that the bacteriocin contained 43-44 amino acid residues. The predicted M(r) and isolectric point of the bacteriocin are about 4600 and 8.6, respectively. Comparing the amino acid sequence of this bacteriocin with the sequences of leucocin A-UAL 187, sakacin P and curvacin A (bacteriocins produced by Leuconostoc gelidum, Lactobacillus sake and Lactobacillus curvatus, respectively) revealed that all four bacteriocins had in their N-terminal region the sequence Tyr-Gly-Asn-Gly-Val-Xaa-Cys, indicating that this concensus sequence is of fundamental importance for this group of bacteriocins. The bacteriocin from P. acidilactici and sakacin P were very similar, having at least 25 common amino acid residues. The sequence similarity was greatest in the N-terminal half of the molecules--17 of the first 19 residues were common--indicating the fundamental importance of this region. Leucocin A-UAL 187 and curvacin A had, respectively, at least 16 and 13 amino acid residues in common with the bacteriocin from P. acidilactici.
KeywordMeSH Terms
2. Motlagh  AM, Bhunia  AK, Szostek  F, Hansen  TR, Johnson  MC, Ray  B,     ( 1992 )

Nucleotide and amino acid sequence of pap-gene (pediocin AcH production) in Pediococcus acidilactici H.

Letters in applied microbiology 15 (2)
PMID : 1368421  :  
Abstract >>
N-terminal analysis of purified pediocin AcH produced a partial sequence of 23 amino acids. This sequence matched perfectly with a segment of 23 amino acids in a 62 amino acid molecule generated from the 186 nucleotide sequence open reading frame in a Hind III fragment in pSMB74 encoding pap-gene (pediocin AcH production). It is suggested that the molecule is translated as inactive prepediocin AcH of 62 amino acids. Then through enzymatic modifications the leader segment of 18 amino acids is removed from the NH2-terminal. The remaining segment of 44 amino acids is active pediocin AcH of 4628 M(r).
KeywordMeSH Terms
3. Dobson  CM, Deneer  H, Lee  S, Hemmingsen  S, Glaze  S, Ziola  B,     ( 2002 )

Phylogenetic analysis of the genus Pediococcus, including Pediococcus claussenii sp. nov., a novel lactic acid bacterium isolated from beer.

International journal of systematic and evolutionary microbiology 52 (Pt 6)
PMID : 12508860  :   DOI  :   10.1099/00207713-52-6-2003    
Abstract >>
Pediococci are found in foods and on plants and as beer-spoilage agents. The goal of the present study was to use the DNA sequences of the first three variable regions of the 165 rRNA gene, the 16S-23S rRNA internally transcribed spacer region sequence and approximately a third of the 60 kDa heat-shock protein gene to elucidate phylogenetic groupings within the genus Pediococcus. Phylogenetic trees were created with sequence data from 31 Pediococcus and three Lactobacillus isolates. Complete 16S rRNA gene sequences from selected Pediococcus isolates were also examined. The results were interpreted in relation to the currently accepted Pediococcus species. We found that, where previously done, speciation of many Pediococcus isolates is inaccurate. Also, one grouping of seven isolates did not include any currently recognized Pediococcus species type isolate. Our phylogenetic analyses support the conclusion that these seven isolates, all of brewing spoilage origin, belong to a novel species, for which the name Pediococcus claussenii sp. nov. is proposed (type strain P06(T0 = ATCC BAA-344(T) = DSM 14800(T)). Phylogenetic analysis has therefore helped to resolve problems surrounding species identification of Pediococcus isolates.
KeywordMeSH Terms
4. Heinz  M, von Wintzingerode  F, Moter  A, Halle  E, Lohbrunner  H, Kaisers  U, Neuhaus  P, Halle  E,     ( 2000 )

A case of septicemia with Pediococcus acidilactici after long-term antibiotic treatment.

European journal of clinical microbiology & infectious diseases : official publication of the European Society of Clinical Microbiology 19 (12)
PMID : 11205633  :   DOI  :   10.1007/s100960000409    
Abstract >>
Presented here is a case of septicemia caused by an uncommon, multiresistant, gram-positive microorganism (Pediococcus acidilactici) after long-term antibiotic treatment. Pediococcus spp. are rarely cultivated from clinical specimens, and species differentiation is difficult due to the paucity of phenotypic traits. In this case, a polyphasic approach consisting of phenotypic and molecular genetic analyses was used, and the identification of Pediococcus acidilactici was conclusive. Precise identification and antimicrobial susceptibility testing of rarely isolated bacteria are required in order to provide adequate treatment to infected patients and to determine the pathogenic role of these organisms.
KeywordMeSH Terms
Pediococcus
5. Mora  D, Parini  C, Fortina  MG, Manachini  PL,     ( 2000 )

Development of molecular RAPD marker for the identification of Pediococcus acidilactici strains.

Systematic and applied microbiology 23 (3)
PMID : 11108020  :   DOI  :   10.1016/S0723-2020(00)80071-5    
Abstract >>
A RAPD analysis performed using a single primer targeted to the pediocin AcH/PA-1 gene was carried out on several P. acidilactici strains and on some related species of lactic acid bacteria. The high degree of genetic variability detected in P. acidilactici strains did not allow the selection of a common RAPD fragment that could be chosen as a potential species-specific DNA marker. Nevertheless a 700 bp fragment, that was found to be peculiar of all potential pediocin producer strains analyzed, was cloned and sequenced with the aim to develop a species specific PCR marker. Sequence analysis of the cloned 700 bp fragment showed one putative small open reading frame (ORF1), with no significant homology with known genes, and a partial putative second coding region (ORF2) with a high degree of similarity with several methionyl tRNA synthesis (metS) genes. The two coding regions were separated by a short spacer region. Primers targeted to ORF2 plus part of the spacer region and primers designed for the amplification of the entire cloned RAPD fragment were found to be species-specific for the detection of P. acidilactici strains. Furthermore primers designed on the ORF1 sequence allowed the amplification of a 439 bp fragment only in some P. acidilactici strains, including pediocin producing strains.
KeywordMeSH Terms
6. Scheirlinck  I, Van der Meulen  R, Van Schoor  A, Vancanneyt  M, De Vuyst  L, Vandamme  P, Huys  G,     ( 2007 )

Influence of geographical origin and flour type on diversity of lactic acid bacteria in traditional Belgian sourdoughs.

Applied and environmental microbiology 73 (19)
PMID : 17675431  :   DOI  :   10.1128/AEM.00894-07     PMC  :   PMC2075033    
Abstract >>
A culture-based approach was used to investigate the diversity of lactic acid bacteria (LAB) in Belgian traditional sourdoughs and to assess the influence of flour type, bakery environment, geographical origin, and technological characteristics on the taxonomic composition of these LAB communities. For this purpose, a total of 714 LAB from 21 sourdoughs sampled at 11 artisan bakeries throughout Belgium were subjected to a polyphasic identification approach. The microbial composition of the traditional sourdoughs was characterized by bacteriological culture in combination with genotypic identification methods, including repetitive element sequence-based PCR fingerprinting and phenylalanyl-tRNA synthase (pheS) gene sequence analysis. LAB from Belgian sourdoughs belonged to the genera Lactobacillus, Pediococcus, Leuconostoc, Weissella, and Enterococcus, with the heterofermentative species Lactobacillus paralimentarius, Lactobacillus sanfranciscensis, Lactobacillus plantarum, and Lactobacillus pontis as the most frequently isolated taxa. Statistical analysis of the identification data indicated that the microbial composition of the sourdoughs is mainly affected by the bakery environment rather than the flour type (wheat, rye, spelt, or a mixture of these) used. In conclusion, the polyphasic approach, based on rapid genotypic screening and high-resolution, sequence-dependent identification, proved to be a powerful tool for studying the LAB diversity in traditional fermented foods such as sourdough.
KeywordMeSH Terms
Bacterial Typing Techniques
Fermentation
Genetic Variation
7. O'Connor  EB, O'Sullivan  O, Stanton  C, Danielsen  M, Simpson  PJ, Callanan  MJ, Ross  RP, Hill  C,     ( 2007 )

pEOC01: a plasmid from Pediococcus acidilactici which encodes an identical streptomycin resistance (aadE) gene to that found in Campylobacter jejuni.

Plasmid 58 (2)
PMID : 17395262  :   DOI  :   10.1016/j.plasmid.2007.02.002    
Abstract >>
The complete nucleotide sequence of pEOC01, a plasmid (11,661 bp) from Pediococcus acidilactici NCIMB 6990 encoding resistance to clindamycin, erythromycin, and streptomycin was determined. The plasmid, which also replicates in Lactococcus and Lactobacillus species contains 16 putative open reading frames (ORFs), including regions annotated to encode replication, plasmid maintenance and multidrug resistance functions. Based on an analysis the plasmid replicates via a theta replicating mechanism closely related to those of many larger Streptococcus and Enterococcus plasmids. Interestingly, genes homologous to a toxin/antitoxin plasmid maintenance system are present and are highly similar to the omega-epsilon-zeta operon of Streptococcus plasmids. The plasmid contains two putative antibiotic resistance homologs, an ermB gene encoding erythromycin and clindamycin resistance, and a streptomycin resistance gene, aadE. Of particular note is the aadE gene which holds 100% identity to an aadE gene found in Campylobacter jejuni plasmid but which probably originated from a Gram-positive source. This observation is significant in that it provides evidence for recent horizontal transfer of streptomycin resistance from a lactic acid bacterium to a Gram-negative intestinal pathogen and as such infers a role for such plasmids for dissemination of antibiotic resistance genes possibly in the human gut.
KeywordMeSH Terms
Genes, Bacterial
8. Henderson  JT, Chopko  AL, van Wassenaar  PD,     ( 1992 )

Purification and primary structure of pediocin PA-1 produced by Pediococcus acidilactici PAC-1.0.

Archives of biochemistry and biophysics 295 (1)
PMID : 1575516  :   DOI  :   10.1016/0003-9861(92)90480-k    
Abstract >>
The plasmid-encoded bacteriocin pediocin PA-1, produced by the gram-positive bacterium Pediococcus acidilactici strain PAC-1.0, was purified to homogeneity. The purified product exhibited antibacterial activity against several gram-positive bacterial strains, including the food pathogen Listeria monocytogenes. Pediocin PA-1 is a 4629-Da peptide with 44 amino acids and two disulfide bonds. The amino acid sequence and arrangement of the disulfide bonds were determined. Sequence data were used to calculate an isoelectric point of 10.0. The small and basic nature of PA-1 is comparable to several other bacteriocins produced by gram-positive bacteria. Reported sequences of other bacteriocins and of other antimicrobial peptides from diverse origins bear no resemblance to the sequence reported here.
KeywordMeSH Terms
9. Hill  JE, Penny  SL, Crowell  KG, Goh  SH, Hemmingsen  SM,     ( 2004 )

cpnDB: a chaperonin sequence database.

Genome research 14 (8)
PMID : 15289485  :   DOI  :   10.1101/gr.2649204     PMC  :   PMC509277    
Abstract >>
Type I chaperonins are molecular chaperones present in virtually all bacteria, some archaea and the plastids and mitochondria of eukaryotes. Sequences of cpn60 genes, encoding 60-kDa chaperonin protein subunits (CPN60, also known as GroEL or HSP60), are useful for phylogenetic studies and as targets for detection and identification of organisms. Conveniently, a 549-567-bp segment of the cpn60 coding region can be amplified with universal PCR primers. Here, we introduce cpnDB, a curated collection of cpn60 sequence data collected from public databases or generated by a network of collaborators exploiting the cpn60 target in clinical, phylogenetic, and microbial ecology studies. The growing database currently contains approximately 2000 records covering over 240 genera of bacteria, eukaryotes, and archaea. The database also contains over 60 sequences for the archaeal Type II chaperonin (thermosome, a homolog of eukaryotic cytoplasmic chaperonin) from 19 archaeal genera. As the largest curated collection of sequences available for a protein-encoding gene, cpnDB provides a resource for researchers interested in exploiting the power of cpn60 as a diagnostic or as a target for phylogenetic or microbial ecology studies, as well as those interested in broader subjects such as lateral gene transfer and codon usage. We built cpnDB from open source tools and it is available at http://cpndb.cbr.nrc.ca.
KeywordMeSH Terms
10. Marugg  JD, Gonzalez  CF, Kunka  BS, Ledeboer  AM, Pucci  MJ, Toonen  MY, Walker  SA, Zoetmulder  LC, Vandenbergh  PA,     ( 1992 )

Cloning, expression, and nucleotide sequence of genes involved in production of pediocin PA-1, and bacteriocin from Pediococcus acidilactici PAC1.0.

Applied and environmental microbiology 58 (8)
PMID : 1514784  :   PMC  :   PMC195787    
Abstract >>
The production of pediocin PA-1, a small heat-stable bacteriocin, is associated with the presence of the 9.4-kbp plasmid pSRQ11 in Pediococcus acidilactici PAC1.0. It was shown by subcloning of pSRQ11 in Escherichia coli cloning vectors that pediocin PA-1 is produced and, most probably, secreted by E. coli cells. Deletion analysis showed that a 5.6-kbp SalI-EcoRI fragment derived from pSRQ11 is required for pediocin PA-1 production. Nucleotide sequence analysis of this 5.6-kbp fragment indicated the presence of four clustered open reading frames (pedA, pedB, pedC, and pedD). The pedA gene encodes a 62-amino-acid precursor of pediocin PA-1, as the predicted amino acid residues 19 to 62 correspond entirely to the amino acid sequence of the purified pediocin PA-1. Introduction of a mutation in pedA resulted in a complete loss of pediocin production. The pedB and pedC genes, encoding proteins of 112 and 174 amino acid residues, respectively, are located directly downstream of the pediocin structural gene. Functions could not be assigned to their gene products; mutation analysis showed that the PedB protein is not involved in pediocin PA-1 production. The mutation analysis further revealed that the fourth gene, pedD, specifying a relatively large protein of 724 amino acids, is required for pediocin PA-1 production in E. coli. The predicted pedD protein shows strong similarities to several ATP-dependent transport proteins, including the E. coli hemolysin secretion protein HlyB and the ComA protein, which is required for competence induction for genetic transformation in Streptococcus pneumoniae.(ABSTRACT TRUNCATED AT 250 WORDS)
KeywordMeSH Terms
DNA-Binding Proteins
11. García-Cano  I, Campos-Gómez  M, Contreras-Cruz  M, Serrano-Maldonado  CE, González-Canto  A, Peña-Montes  C, Rodríguez-Sanoja  R, Sánchez  S, Farrés  A,     ( 2015 )

Expression, purification, and characterization of a bifunctional 99-kDa peptidoglycan hydrolase from Pediococcus acidilactici ATCC 8042.

Applied microbiology and biotechnology 99 (20)
PMID : 25940238  :   DOI  :   10.1007/s00253-015-6593-2    
Abstract >>
Pediococcus acidilactici ATCC 8042 is a lactic acid bacteria that inhibits pathogenic microorganisms such as Staphylococcus aureus through the production of two proteins with lytic activity, one of 110 kDa and the other of 99 kDa. The 99-kDa one has high homology to a putative peptidoglycan hydrolase (PGH) enzyme reported in the genome of P. acidilactici 7_4, where two different lytic domains have been identified but not characterized. The aim of this work was the biochemical characterization of the recombinant enzyme of 99 kDa. The enzyme was cloned and expressed successfully and retains its activity against Micrococcus lysodeikticus. It has a higher N-acetylglucosaminidase activity, but the N-acetylmuramoyl-L-alanine amidase can also be detected spectrophotometrically. The protein was then purified using gel filtration chromatography. Antibacterial activity showed an optimal pH of 6.0 and was stable between 5.0 and 7.0. The optimal temperature for activity was 60 �XC, and all activity was lost after 1 h of incubation at 70 �XC. The number of strains susceptible to the recombinant 99-kDa enzyme was lower than that susceptible to the mixture of the 110- and 99-kDa PGHs of P. acidilactici, a result that suggests synergy between these two enzymes. This is the first PGH from LAB that has been shown to possess two lytic sites. The results of this study will aid in the design of new antibacterial agents from natural origin that can combat foodborne disease and improve hygienic practices in the industrial sector.
KeywordMeSH Terms
4-Nitrophenyl N-acetyl-β-D-glucosamine
N-acetylglucosaminidase
N-acetylmuramoyl-L-alanine amidase
Pediococcus acidilactici ATCC 8042
Peptidoglycan hydrolase
Zymogram
4-Nitrophenyl N-acetyl-β-D-glucosamine
N-acetylglucosaminidase
N-acetylmuramoyl-L-alanine amidase
Pediococcus acidilactici ATCC 8042
Peptidoglycan hydrolase
Zymogram
4-Nitrophenyl N-acetyl-β-D-glucosamine
N-acetylglucosaminidase
N-acetylmuramoyl-L-alanine amidase
Pediococcus acidilactici ATCC 8042
Peptidoglycan hydrolase
Zymogram
12. Kaur  B, Chakraborty  D, Kumar  B,     ( 2014 )

Metabolic engineering of Pediococcus acidilactici BD16 for production of vanillin through ferulic acid catabolic pathway and process optimization using response surface methodology.

Applied microbiology and biotechnology 98 (20)
PMID : 25077778  :   DOI  :   10.1007/s00253-014-5950-x    
Abstract >>
Occurrence of feruloyl-CoA synthetase (fcs) and enoyl-CoA hydratase (ech) genes responsible for the bioconversion of ferulic acid to vanillin have been reported and characterized from Amycolatopsis sp., Streptomyces sp., and Pseudomonas sp. Attempts have been made to express these genes in Escherichia coli DH5�\, E. coli JM109, and Pseudomonas fluorescens. However, none of the lactic acid bacteria strain having GRAS status was previously proposed for heterologous expression of fcs and ech genes for production of vanillin through biotechnological process. Present study reports heterologous expression of vanillin synthetic gene cassette bearing fcs and ech genes in a dairy isolate Pediococcus acidilactici BD16. After metabolic engineering, statistical optimization of process parameters that influence ferulic acid to vanillin biotransformation in the recombinant strain was carried out using central composite design of response surface methodology. After scale-up of the process, 3.14 mM vanillin was recovered from 1.08 mM ferulic acid per milligram of recombinant cell biomass within 20 min of biotransformation. From LCMS-ESI spectral analysis, a metabolic pathway of phenolic biotransformations was predicted in the recombinant P. acidilactici BD16 (fcs (+)/ech (+)).
KeywordMeSH Terms
Metabolic Engineering
13. Garmyn  D, Ferain  T, Bernard  N, Hols  P, Delcour  J,     ( 1995 )

Cloning, nucleotide sequence, and transcriptional analysis of the Pediococcus acidilactici L-(+)-lactate dehydrogenase gene.

Applied and environmental microbiology 61 (1)
PMID : 7887607  :   PMC  :   PMC167282    
Abstract >>
Recombinant plasmids containing the Pediococcus acidilactici L-(+)-lactate dehydrogenase gene (ldhL) were isolated by complementing for growth under anaerobiosis of an Escherichia coli lactate dehydrogenase-pyruvate formate lyase double mutant. The nucleotide sequence of the ldhL gene predicted a protein of 323 amino acids showing significant similarity with other bacterial L-(+)-lactate dehydrogenases and especially with that of Lactobacillus plantarum. The ldhL transcription start points in P. acidilactici were defined by primer extension, and the promoter sequence was identified as TCAAT-(17 bp)-TATAAT. This sequence is closely related to the consensus sequence of vegetative promoters from gram-positive bacteria as well as from E. coli. Northern analysis of P. acidilactici RNA showed a 1.1-kb ldhL transcript whose abundance is growth rate regulated. These data, together with the presence of a putative rho-independent transcriptional terminator, suggest that ldhL is expressed as a monocistronic transcript in P. acidilactici.
KeywordMeSH Terms
Genes, Bacterial
14. Motlagh  A, Bukhtiyarova  M, Ray  B,     ( 1994 )

Complete nucleotide sequence of pSMB 74, a plasmid encoding the production of pediocin AcH in Pediococcus acidilactici.

Letters in applied microbiology 18 (6)
PMID : 7764941  :  
Abstract >>
Several Pediococcus acidilactici strains produce a plasmid-encoded bacteriocin, pediocin AcH. Previous studies have shown that this plasmid, designated as pSMB 74, encodes genes associated with the production of prepediocin, its post-translation processing to pediocin AcH, transmembrane translocation of these molecules, and immunity of producer cells against pediocin AcH. We report here the complete nucleotide sequence of pSMB 74. The plasmid has a total of 8877 bp. Four genes have been located on pSMB 74. The genes are arranged in a gene cluster of 3500 bp and share a common promoter and rho-independent stem-loop terminator. The four genes, each with independent ribosome binding sites (rbs), initiation and termination codons and spacer sequences in between, were designated as pap A, pap B, pap C and pap D and encode respectively for proteins of 62, 112, 174 and 724 amino acids. The results of this study can be useful either to introduce a suitable marker at a unique restriction site in pSMB 74 and use it as a vector or to clone the pap gene cluster in a suitable plasmid and transform desirable strains for pediocin AcH production. The gene sequence has been submitted to Gene Bank (Acc. No. U02482).
KeywordMeSH Terms
15. Cintas  LM, Rodriguez  JM, Fernandez  MF, Sletten  K, Nes  IF, Hernandez  PE, Holo  H,     ( 1995 )

Isolation and characterization of pediocin L50, a new bacteriocin from Pediococcus acidilactici with a broad inhibitory spectrum.

Applied and environmental microbiology 61 (7)
PMID : 7618877  :   PMC  :   PMC167537    
Abstract >>
Lactic acid bacteria were isolated from Spanish dry-fermented sausages and screened for bacteriocin production. About 10% of the isolates produced antimicrobial substances when grown on solid media, but only 2% produced detectable activity in liquid media. Strain L50, identified as Pediococcus acidilactici, showed the strongest inhibitory activity and was active against members of all of the gram-positive genera tested. The strain produced a heat-stable bacteriocin when grown at 8 to 32 degrees C but not at 45 degrees C. The bacteriocin was purified to homogeneity. Its mass was determined to be 5,250.11 +/- 0.30 by electrospray mass spectrometry. The N terminus of the bacteriocin was blocked for sequencing by Edman degradation, but a partial sequence of 42 amino acids was obtained after cleavage of the peptide by cyanogen bromide. The sequence showed no similarity to those of other bacteriocins. Pediocin L50 appears to contain modified amino acids but not lanthionine or methyl-lanthionine.
KeywordMeSH Terms
16. Garmyn  D, Ferain  T, Bernard  N, Hols  P, Delplace  B, Delcour  J,     ( 1995 )

Pediococcus acidilactici ldhD gene: cloning, nucleotide sequence, and transcriptional analysis.

Journal of bacteriology 177 (12)
PMID : 7539419  :   DOI  :   10.1128/jb.177.12.3427-3437.1995     PMC  :   PMC177045    
Abstract >>
The gene encoding D-lactate dehydrogenase was isolated on a 2.9-kb insert from a library of Pediococcus acidilactici DNA by complementation for growth under anaerobiosis of an Escherichia coli lactate dehydrogenase and pyruvate-formate lyase double mutant. The nucleotide sequence of ldhD encodes a protein of 331 amino acids (predicted molecular mass of 37,210 Da) which shows similarity to the family of D-2-hydroxyacid dehydrogenases. The enzyme encoded by the cloned fragment is equally active on pyruvate and hydroxypyruvate, indicating that the enzyme has both D-lactate and D-glycerate dehydrogenase activities. Three other open reading frames were found in the 2.9-kb insert, one of which (rpsB) is highly similar to bacterial genes coding for ribosomal protein S2. Northern (RNA) blotting analyses indicated the presence of a 2-kb dicistronic transcript of ldhD (a metabolic gene) and rpsB (a putative ribosomal protein gene) together with a 1-kb monocistronic rpsB mRNA. These transcripts are abundant in the early phase of exponential growth but steadily fade away to disappear in the stationary phase. Primer extension analysis identified two distinct promoters driving either cotranscription of ldhD and rpsB or transcription of rpsB alone.
KeywordMeSH Terms
Lactate Dehydrogenases
17.     ( 2012 )

Pediococcus lolii DSM 19927T and JCM 15055T are strains of Pediococcus acidilactici.

International journal of systematic and evolutionary microbiology 62 (Pt 12)
PMID : 23225319  :   DOI  :   10.1099/ijs.0.046201-0     DOI  :   10.1099/ijs.0.046201-0    
Abstract >>
Strain NGRI 0510Q(T), isolated from ryegrass silage, was recently classified as a representative of a novel Pediococcus species, Pediococcus lolii Doi et al. 2009. It was deposited in the DSMZ and JCM culture collections as DSM 19927(T) and JCM 15055(T), respectively. A polyphasic taxonomic study, including matrix-assisted laser desorption/ionization time-of-flight mass spectrometry, pheS and 16S rRNA gene sequence analysis, fluorescent amplified fragment length polymorphism and DNA-DNA hybridization, was used to prove that both subcultures of the type, and only, strain of this species are strains of Pediococcus acidilactici.
KeywordMeSH Terms
Phylogeny
Phylogeny

331, Shih-Pin Rd., Hsinchu 30062, Taiwan

Phone: +886-3-5223191

E-mail: bcrcweb@firdi.org.tw

web maintainance: +886-3-5223191 ext 593

Copyright © 2018.BCRC All rights reserved.The duplication or use of information and data such as texts or images or any linkage the website at the "bcrc.firdi.org.tw" is only permitted with the indication of the source or with prior approval by the BCRC(Bioresource Collection and Research Center).