BCRC Strain Collection Catalog & Shopping Cart

  Home / BCRC Content / 80474 / 

Return

  Research Article

The information shown in this page was generated using the cross-referenced linkage within public domain database between their strains and BCRC related strains. Usually the information provided from public domain databases varies with different confidences and errors, BCRC provides the related information here at best effort, but BCRC doesn't take the responsibility about the correctness of the information provided here.

1. Mori  S, Nirasawa  S, Komba  S, Kasumi  T,     ( 2005 )

Characterization and kinetic analysis of enzyme-substrate recognition by three recombinant lactococcal tripeptidases.

Biochimica et biophysica acta 1748 (1)
PMID : 15752689  :   DOI  :   10.1016/j.bbapap.2004.12.001    
Abstract >>
Tripeptidases from Lactococcus lactis subsp. lactis (L9PepTR), L. lactis subsp. cremoris (L6PepTR), and L. lactis subsp. hordniae (hTPepTR) were cloned, overexpressed, purified, and characterized. Although these enzymes contained three to seven naturally occurring amino acid differences, both metal-binding and catalytic sites were highly conserved. The k(cat) values of hTPepTR were approximately 1.5- to 2-fold higher than those of L9PepTR, while, for L6PepTR, they were approximately 0.8- to 1.4-times the L9PepTR values. The K(m) of tripeptidase from subsp. lactis (L9PepTR) was considerably larger when glycine was the amino acid located at both the N- and C-terminus of the peptide substrate. In addition, the K(m) values of L9PepTR increased in the following order for YGG, LGG, FGG, SGG, and alpha-aminoisobutyrylglycylglycine, while the k(cat)/K(m) decreased in the same order. These results suggest that the dipole moment and steric hindrance of the N-terminal amino acid side chain may be the most important factors controlling substrate specificity.
KeywordMeSH Terms
2. Mori  S, Mori  K, Suzuki  I, Kasumi  T,     ( 2004 )

Phylogenetic analysis of Lactococcus lactis subspecies based on decoding the sequence of the pepT tripeptidase gene, the pepV dipeptidase gene and 16S rRNA.

Systematic and applied microbiology 27 (4)
PMID : 15368846  :   DOI  :   10.1078/0723202041438400    
Abstract >>
Tripeptidase (PepT) and dipeptidase (PepV), the enzymes located in the final stage of the intracellular proteolytic system, were demonstrated to be distributed widely in lactic acid bacteria, especially in lactococci. Both the tripeptidase genes (pepT) and dipeptidase genes (pepV) of 15 lactococcal strains consisting of the type and domestic strains were cloned and sequenced using normal and TAIL PCR methods. Amino acid sequences of these enzymes were highly conserved among strains. Evolutionary distance trees based on the sequence of 1239 nucleotides of pepT and 1416 nucleotide of pepV showed a similar cluster as that obtained from the 1499 fragment of the 16S rRNA. Based on this profile, the species Lactococcus lactis is reasonably divided into three subspecies groups, subsp. lactis, cremoris, and hordniae, as in the current classification. Figure of trees from pepT and pepV were essentially identical to each other and slightly more intricate than that from 16S rRNA. The K nuc values obtained from pepT and pepV genes were approximately ten times as high as that from 16S rRNA. Considering these results, phylogenetic analysis based on pepT and pepV genes may aid in a more precise index of classification of L. lactis subspecies. PepT and PepV seem to have evolved in similar directions in lactococci.
KeywordMeSH Terms
Phylogeny
3. Pérez  T, Balcázar  JL, Peix  A, Valverde  A, Velázquez  E, de Blas  I, Ruiz-Zarzuela  I,     ( 2011 )

Lactococcus lactis subsp. tructae subsp. nov. isolated from the intestinal mucus of brown trout (Salmo trutta) and rainbow trout (Oncorhynchus mykiss).

International journal of systematic and evolutionary microbiology 61 (Pt 8)
PMID : 20833888  :   DOI  :   10.1099/ijs.0.023945-0    
Abstract >>
The species Lactococcus lactis currently includes three subspecies; L. lactis subsp. lactis and L. lactis subsp. cremoris, isolated from milk sources, and L. lactis subsp. hordniae, isolated from the leafhopper Hordnia circellata. In this study, three strains, designated L105(T), I3 and L101, were isolated from the intestinal mucus of brown trout (Salmo trutta) and rainbow trout (Oncorhynchus mykiss). These strains were closely related to members of the species Lactococcus lactis. Strain L105(T) showed 99.4 % 16S rRNA gene sequence similarity to that of the type strains L. lactis subsp. lactis NCDO 604(T) and L. lactis subsp. hordniae NCDO 2181(T) and showed 99.9 % similarity to the type strain Lactococcus lactis subsp. cremoris NCDO 607(T). Analysis of two housekeeping genes, rpoB and recA, confirmed the close relationship between the novel strains and L. lactis subsp. cremoris with similarities of 99.3 and 99.7 %, respectively. The three strains could, however, be differentiated from their closest relatives on the basis of several phenotypic characteristics, as was the case for L. lactis subsp. lactis and L. lactis subsp. hordniae, which were also closely related on the basis of 16S rRNA, rpoB and recA gene sequence similarities. The strains isolated in this study represent a new subspecies, for which the name Lactococcus lactis subsp. tructae subsp. nov. is proposed. The type strain is L105(T) (= LMG 24662(T) = DSM 21502(T)).
KeywordMeSH Terms
4. Rahkila  R, Nieminen  T, Johansson  P, Säde  E, Björkroth  J,     ( 2012 )

Characterization and evaluation of the spoilage potential of Lactococcus piscium isolates from modified atmosphere packaged meat.

International journal of food microbiology 156 (1)
PMID : 22445914  :   DOI  :   10.1016/j.ijfoodmicro.2012.02.022    
Abstract >>
A total of 222 psychrotrophic lactococci isolated from use-by day, modified atmosphere packaged (MAP) meat were identified to the species level by numerical analyses of EcoRI and ClaI ribopatterns and phylogenetic sequence analyses of 16S, rpoA and pheS genes. In addition, their meat spoilage potential was studied. The majority of the isolates (n=215) were identified as Lactococcus piscium, while seven isolates belonged to Lactococcus raffinolactis. L. piscium was shown to be adapted to growing in a variety of MAP meat products including broiler, turkey, pork, and minced meat from beef and pork, where they belonged to the predominating microbiota at the end of the storage. Numerical analyses of EcoRI and ClaI ribopatterns, and phylogenetic sequence analyses of rpoA and pheS genes were shown to be reliable tools in species level identification of meat lactococci. The spoilage potential of L. piscium was evaluated by inoculating representative isolates to MAP pork stored at 6 �XC for 22 days. Development of spoilage population was monitored using a culture-independent T-RFLP approach. The sensory shelf life of pork inoculated with L. piscium was shortened compared to the uninoculated control. Alongside with the inoculated L. piscium isolates, Leuconostoc spp. present as initial contaminants in the samples thrived. This shows that even though lactococci were inoculated at higher levels compared to the natural microbiota, they did not occupy the niche and prevent the growth of other lactic acid bacteria.
KeywordMeSH Terms
Food Packaging

331, Shih-Pin Rd., Hsinchu 30062, Taiwan

Phone: +886-3-5223191

E-mail: bcrcweb@firdi.org.tw

web maintainance: +886-3-5223191 ext 593

Copyright © 2018.BCRC All rights reserved.The duplication or use of information and data such as texts or images or any linkage the website at the "bcrc.firdi.org.tw" is only permitted with the indication of the source or with prior approval by the BCRC(Bioresource Collection and Research Center).