BCRC Strain Collection Catalog & Shopping Cart

  Home / BCRC Content / 80543 / 

Return

  Research Article

The information shown in this page was generated using the cross-referenced linkage within public domain database between their strains and BCRC related strains. Usually the information provided from public domain databases varies with different confidences and errors, BCRC provides the related information here at best effort, but BCRC doesn't take the responsibility about the correctness of the information provided here.

1. Lund  V, Espelid  S, Mikkelsen  H,     ( 2003 )

Vaccine efficacy in spotted wolffish Anarhichas minor: relationship to molecular variation in A-layer protein of atypical Aeromonas salmonicida.

Diseases of aquatic organisms 56 (1)
PMID : 14524499  :   DOI  :   10.3354/dao056031    
Abstract >>
Atypical Aeromonas salmonicida strains comprise a heterogeneous group in terms of molecular and phenotypic characteristics. They cause various conditions of ulcer diseases or atypical furunculosis and are being isolated in increasing number from various fish species and geographical areas. Several marine fish species susceptible to atypical A. salmonicida, including spotted wolffish Anarhichas minor O., are now being farmed and new vaccines may be needed. A commercial furunculosis vaccine for salmon is reported to protect wolffish poorly against experimental challenge with atypical A. salmonicida. The protective antigen(s) in furunculosis vaccines is still unclear, but in oil-adjuvanted vaccine for Atlantic salmon Salmo salar L., the surface A-layer was shown to be important for protection. In spotted wolffish, the efficacy of atypical furunculosis vaccines seems to vary with the atypical A. salmonicida strains used as bacterin in the vaccine. In the present study we investigated whether differences in the A-layer protein among atypical strains might be responsible for the observed variation in vaccine efficacy. Atypical A. salmonicida strains from 16 fish species in 11 countries were compared by genome polymorphism analysis using amplified fragment length polymorphism (AFLP) fingerprinting and by comparative sequencing of the vapA genes encoding the A-protein. The A-protein sequences appeared to be highly conserved except for a variable region between Residues 90 to 170. Surprisingly, the grouping of strains based on AFLP- or A-protein sequence similarities was consistent. In addition, serological differences in the A-protein among the strains were demonstrated by an A-protein-specific monoclonal antibody. Vaccines based on atypical A. salmonicida strains possessing genetically and serologically different A-layer proteins were shown to result in significantly different protection in spotted wolffish.
KeywordMeSH Terms
Virulence Factors
2. Yáñez  MA, Catalán  V, Apráiz  D, Figueras  MJ, Martínez-Murcia  AJ,     ( 2003 )

Phylogenetic analysis of members of the genus Aeromonas based on gyrB gene sequences.

International journal of systematic and evolutionary microbiology 53 (Pt 3)
PMID : 12807216  :   DOI  :   10.1099/ijs.0.02443-0    
Abstract >>
The phylogenetic relationships of all known species of the genus Aeromonas were investigated by using the sequence of gyrB, a gene that encodes the B-subunit of DNA gyrase. Nucleotide sequences of gyrB were determined from 53 Aeromonas strains, including some new isolates, which were also characterized by analysis of the 16S rDNA variable regions. The results support the recognition of the family Aeromonadaceae, as distinct from Plesiomonas shigelloides and other enteric bacteria. This phylogenetic marker revealed strain groupings that are consistent with the taxonomic organization of all Aeromonas species described to date. In particular, gyrB results agreed with 16S rDNA analysis; moreover, the former showed a higher capacity to differentiate between species. The present analysis was useful for the elucidation of reported discrepancies between different DNA-DNA hybridization sets. Additionally, due to the sequence diversity found at the intraspecies level, gyrB is proposed as a useful target for simultaneous identification of species and strains. In conclusion, the gyrB gene has proved to be an excellent molecular chronometer for phylogenetic studies of the genus Aeromonas.
KeywordMeSH Terms
Phylogeny
Sequence Analysis, DNA
3. Soler  L, Yáñez  MA, Chacon  MR, Aguilera-Arreola  MG, Catalán  V, Figueras  MJ, Martínez-Murcia  AJ,     ( 2004 )

Phylogenetic analysis of the genus Aeromonas based on two housekeeping genes.

International journal of systematic and evolutionary microbiology 54 (Pt 5)
PMID : 15388703  :   DOI  :   10.1099/ijs.0.03048-0    
Abstract >>
The phylogenetic relationships of all known species of the genus Aeromonas, and especially Aeromonas bestiarum and Aeromonas salmonicida, were investigated on 70 strains using the rpoD sequence, which encodes the sigma70 factor. This analysis was complemented with the sequence of gyrB, which has already proven useful for determining the phylogenetic relationships in the genus. Nucleotide sequences of rpoD and gyrB showed that both genes had similar substitution rates (< 2 %) and a similar number of variable positions (34 % for rpoD versus 32 % for gyrB). Strain groupings by analysis of rpoD, gyrB and a combination of both genes were consistent with the taxonomic organization of all Aeromonas species described to date. However, the simultaneous analysis of both clocks improved the reliability and the power to differentiate, in particular, closely related taxa. At the inter-species level, gyrB showed a better resolution for differentiating Aeromonas sp. HG11/Aeromonas encheleia and Aeromonas veronii/Aeromonas culicicola/Aeromonas allosaccharophila, while rpoD more clearly differentiated A. salmonicida from A. bestiarum. The analysis of rpoD provided initial evidence for clear phylogenetic divergence between the latter two species.
KeywordMeSH Terms
Phylogeny
4. Farfán  M, Miñana-Galbis  D, Garreta  A, Lorén  JG, Fusté  MC,     ( 2010 )

Malate dehydrogenase: a useful phylogenetic marker for the genus Aeromonas.

Systematic and applied microbiology 33 (8)
PMID : 21095084  :   DOI  :   10.1016/j.syapm.2010.09.005    
Abstract >>
The reconstruction of correct genealogies among biological entities, the estimation of the divergence time between organisms or the study of the different events that occur along evolutionary lineages are not always based on suitable genes. For reliable results, it is necessary to look at full-length sequences of genes under stabilizing selection (neutral or purifying) and behaving as good molecular clocks. In bacteria it has been proved that the malate dehydrogenase gene (mdh) can be used to determine the inter- and intraspecies divergence, and hence this gene constitutes a potential marker for phylogeny and bacterial population genetics. We have sequenced the full-length mdh gene in 36 type and reference strains of Aeromonas. The species grouping obtained in the phylogenetic tree derived from mdh sequences was in agreement with that currently accepted for the genus Aeromonas. The maximum likelihood models applied to our sequences indicated that the mdh gene is highly conserved among the Aeromonas species and the main evolutionary force acting on it is purifying selection. Only two sites under potential diversifying selection were identified (T 108 and S 193). In order to determine if these two residues could have an influence on the MDH structure, we mapped them in a three-dimensional model constructed from the sequence of A. hydrophila using the human mitochondrial MDH as a template. The presence of purifying selection together with the linear relationship between substitutions and gene divergence makes the mdh an excellent candidate gene for a phylogeny of Aeromonas and probably for other bacterial groups.
KeywordMeSH Terms
5. Lorén  JG, Farfán  M, Miñana-Galbis  D, Fusté  MC,     ( 2010 )

Prediction of whole-genome DNA G+C content within the genus Aeromonas based on housekeeping gene sequences.

Systematic and applied microbiology 33 (5)
PMID : 20466501  :   DOI  :   10.1016/j.syapm.2010.03.007    
Abstract >>
Different methods are available to determine the G+C content (e.g. thermal denaturation temperature or high performance liquid chromatography, HPLC), but obtained values may differ significantly between strains, as well as between laboratories. Recently, several authors have demonstrated that the genomic DNA G+C content of prokaryotes can be reliably estimated from one or several protein coding gene nucleotide sequences. Few G+C content values have been published for the Aeromonas species described and the data, when available, are often incomplete or provide only a range of values. Our aim in this current work was twofold. First, the genomic G+C content of the type or reference strains of all species and subspecies of the genus Aeromonas was determined with a traditional experimental method in the same laboratory. Second, we wanted to see if the sequence-based method to estimate the G+C content described by Fournier et al. [7] could be applied to determine the G+C content of the different species of Aeromonas from the sequences of the genes used in taxonomy or phylogeny for this genus.
KeywordMeSH Terms
6. Schwenteit  J, Gram  L, Nielsen  KF, Fridjonsson  OH, Bornscheuer  UT, Givskov  M, Gudmundsdottir  BK,     ( 2011 )

Quorum sensing in Aeromonas salmonicida subsp. achromogenes and the effect of the autoinducer synthase AsaI on bacterial virulence.

Veterinary microbiology 147 (3��4��)
PMID : 20708354  :   DOI  :   10.1016/j.vetmic.2010.07.020    
Abstract >>
The Gram-negative fish pathogenic bacterium Aeromonas salmonicida possesses the LuxIR-type quorum sensing (QS) system, termed AsaIR. In this study the role of QS in A. salmonicida subsp. achromogenes virulence and pigment production was investigated. Five wild-type Asa strains induced the N-acyl-homoserinelactone (AHL) monitor bacteria. HPLC-HR-MS analysis identified only one type of AHL, N-butanoyl-L-homoserine lactone (C4-HSL). A knock out mutant of AsaI, constructed by allelic exchange, did not produce a detectable QS signal and its virulence in fish was significantly impaired, as LD(50) of the AsaI-deficient mutant was 20-fold higher than that of the isogenic wt strain and the mean day to death of the mutant was significantly prolonged. Furthermore, the expression of two virulence factors (a toxic protease, AsaP1, and a cytotoxic factor) and a brown pigment were reduced in the mutant. AsaP1 production was inhibited by synthetic QS inhibitors (N-(propylsulfanylacetyl)-L-homoserine lactone; N-(pentylsulfanylacetyl)-L-homoserine lactone; and N-(heptylsulfanylacetyl)-L-homoserine lactone) at concentrations that did not affect bacterial growth. It is a new finding that the AHL synthase of Aeromonas affects virulence in fish and QS has not previously been associated with A. salmonicida infections in fish. Furthermore, AsaP1 production has not previously been shown to be QS regulated. The simplicity of the A. salmonicida subsp. achromogenes LuxIR-type QS system and the observation that synthetic QSI can inhibit an important virulence factor, AsaP1, without affecting bacterial growth, makes A. salmonicida subsp. achromogenes an interesting target organism to study the effects of QS in disease development and QSI in disease control.
KeywordMeSH Terms
Quorum Sensing
7. Miñana-Galbis  D, Urbizu-Serrano  A, Farfán  M, Fusté  MC, Lorén  JG,     ( 2009 )

Phylogenetic analysis and identification of Aeromonas species based on sequencing of the cpn60 universal target.

International journal of systematic and evolutionary microbiology 59 (Pt 8)
PMID : 19567585  :   DOI  :   10.1099/ijs.0.005413-0    
Abstract >>
An analysis of the universal target (UT) sequence from the cpn60 gene was performed in order to evaluate its usefulness in phylogenetic and taxonomic studies and as an identification marker for the genus Aeromonas. Sequences of 555 bp, corresponding to the UT region, were obtained from a collection of 35 strains representing all of the species and subspecies of Aeromonas. From the analysis of these sequences, a range of divergence of 0-23.3% was obtained, with a mean of 11.2+/-0.9%. Comparative analyses between cpn60 and gyrB, rpoD and 16S rRNA gene sequences were carried out from the same Aeromonas strain collection. Sequences of the cpn60 UT region showed similar discriminatory power to gyrB and rpoD sequences. The phylogenetic relationships inferred from cpn60 sequence distances indicated an excellent correlation with the present affiliation of Aeromonas species with the exception of Aeromonas hydrophila subsp. dhakensis, which appeared in a separate phylogenetic line, and Aeromonas sharmana, which exhibited a very loose phylogenetic relationship to the genus Aeromonas. Sequencing of cpn60 from 33 additional Aeromonas strains also allowed us to establish intra- and interspecific threshold values. Intraspecific divergence rates were
KeywordMeSH Terms
8. Reith  ME, Singh  RK, Curtis  B, Boyd  JM, Bouevitch  A, Kimball  J, Munholland  J, Murphy  C, Sarty  D, Williams  J, Nash  JH, Johnson  SC, Brown  LL,     ( 2008 )

The genome of Aeromonas salmonicida subsp. salmonicida A449: insights into the evolution of a fish pathogen.

BMC genomics 9 (N/A)
PMID : 18801193  :   DOI  :   10.1186/1471-2164-9-427     PMC  :   PMC2556355    
Abstract >>
Aeromonas salmonicida subsp. salmonicida is a Gram-negative bacterium that is the causative agent of furunculosis, a bacterial septicaemia of salmonid fish. While other species of Aeromonas are opportunistic pathogens or are found in commensal or symbiotic relationships with animal hosts, A. salmonicida subsp. salmonicida causes disease in healthy fish. The genome sequence of A. salmonicida was determined to provide a better understanding of the virulence factors used by this pathogen to infect fish. The nucleotide sequences of the A. salmonicida subsp. salmonicida A449 chromosome and two large plasmids are characterized. The chromosome is 4,702,402 bp and encodes 4388 genes, while the two large plasmids are 166,749 and 155,098 bp with 178 and 164 genes, respectively. Notable features are a large inversion in the chromosome and, in one of the large plasmids, the presence of a Tn21 composite transposon containing mercury resistance genes and an In2 integron encoding genes for resistance to streptomycin/spectinomycin, quaternary ammonia compounds, sulphonamides and chloramphenicol. A large number of genes encoding potential virulence factors were identified; however, many appear to be pseudogenes since they contain insertion sequences, frameshifts or in-frame stop codons. A total of 170 pseudogenes and 88 insertion sequences (of ten different types) are found in the A. salmonicida genome. Comparison with the A. hydrophila ATCC 7966T genome reveals multiple large inversions in the chromosome as well as an approximately 9% difference in gene content indicating instances of single gene or operon loss or gain.A limited number of the pseudogenes found in A. salmonicida A449 were investigated in other Aeromonas strains and species. While nearly all the pseudogenes tested are present in A. salmonicida subsp. salmonicida strains, only about 25% were found in other A. salmonicida subspecies and none were detected in other Aeromonas species. Relative to the A. hydrophila ATCC 7966T genome, the A. salmonicida subsp. salmonicida genome has acquired multiple mobile genetic elements, undergone substantial rearrangement and developed a significant number of pseudogenes. These changes appear to be a consequence of adaptation to a specific host, salmonid fish, and provide insights into the mechanisms used by the bacterium for infection and avoidance of host defence systems.
KeywordMeSH Terms
Genome, Bacterial
9. Arnadottir  H, Hvanndal  I, Andresdottir  V, Burr  SE, Frey  J, Gudmundsdottir  BK,     ( 2009 )

The AsaP1 peptidase of Aeromonas salmonicida subsp. achromogenes is a highly conserved deuterolysin metalloprotease (family M35) and a major virulence factor.

Journal of bacteriology 191 (1)
PMID : 18952802  :   DOI  :   10.1128/JB.00847-08     PMC  :   PMC2612443    
Abstract >>
Infections by the bacterium Aeromonas salmonicida subsp. achromogenes cause significant disease in a number of fish species. In this study, we showed that AsaP1, a toxic 19-kDa metallopeptidase produced by A. salmonicida subsp. achromogenes, belongs to the group of extracellular peptidases (Aeromonas type) (MEROPS ID M35.003) of the deuterolysin family of zinc-dependent aspzincin endopeptidases. The structural gene of AsaP1 was sequenced and found to be highly conserved among gram-negative bacteria. An isogenic Delta asaP1 A. salmonicida subsp. achromogenes strain was constructed, and its ability to infect fish was compared with that of the wild-type (wt) strain. The Delta asaP1 strain was found to infect Arctic charr, Atlantic salmon, and Atlantic cod, but its virulence was decreased relative to that of the wt strain. The 50% lethal dose of the AsaP1 mutant was 10-fold higher in charr and 5-fold higher in salmon than that of the wt strain. The pathology induced by the AsaP1-deficient strain was also different from that of the wt strain. Furthermore, the mutant established significant bacterial colonization in all observed organs without any signs of a host response in the infected tissue. AsaP1 is therefore the first member of the M35 family that has been shown to be a bacterial virulence factor.
KeywordMeSH Terms
10. Bogdanovi?  X, Palm  GJ, Schwenteit  J, Singh  RK, Gudmundsdóttir  BK, Hinrichs  W,     ( 2016 )

Structural evidence of intramolecular propeptide inhibition of the aspzincin metalloendopeptidase AsaP1.

FEBS letters 590 (18)
PMID : 27528449  :   DOI  :   10.1002/1873-3468.12356    
Abstract >>
The Gram-negative bacterium Aeromonas salmonicida is a fish pathogen for various fish species worldwide. Aeromonas salmonicida subsp. achromogenes produces the extracellular, toxic zinc endopeptidase AsaP1. Crystal structure analyses at 2.0 ? resolution of two proteolytically inactive AsaP1 variants show the polypeptide folding of the protease domain and the propeptide domain. These first crystal structure analyses of a precursor of a deuterolysin-like aspzincin protease provide insights into propeptide function, and specific substrate binding. A lysine side chain of the propeptide binds in the hydrophobic S1'-pocket interacting with three carboxylate side chains. An AsaP1 variant with a lysine to alanine exchange identifies the chaperone function of the propeptide.
KeywordMeSH Terms
Aeromonas salmonicida subsp. achromogenes
autoprocessing
deuterolysin
intramolecular chaperone
zinc endopeptidase
Aeromonas salmonicida subsp. achromogenes
autoprocessing
deuterolysin
intramolecular chaperone
zinc endopeptidase
Protein Folding
11. Lorén  JG, Farfán  M, Fusté  MC,     ( 2014 )

Molecular phylogenetics and temporal diversification in the genus Aeromonas based on the sequences of five housekeeping genes.

PloS one 9 (2)
PMID : 24586399  :   DOI  :   10.1371/journal.pone.0088805     PMC  :   PMC3930666    
Abstract >>
Several approaches have been developed to estimate both the relative and absolute rates of speciation and extinction within clades based on molecular phylogenetic reconstructions of evolutionary relationships, according to an underlying model of diversification. However, the macroevolutionary models established for eukaryotes have scarcely been used with prokaryotes. We have investigated the rate and pattern of cladogenesis in the genus Aeromonas (�^-Proteobacteria, Proteobacteria, Bacteria) using the sequences of five housekeeping genes and an uncorrelated relaxed-clock approach. To our knowledge, until now this analysis has never been applied to all the species described in a bacterial genus and thus opens up the possibility of establishing models of speciation from sequence data commonly used in phylogenetic studies of prokaryotes. Our results suggest that the genus Aeromonas began to diverge between 248 and 266 million years ago, exhibiting a constant divergence rate through the Phanerozoic, which could be described as a pure birth process.
KeywordMeSH Terms
Evolution, Molecular
Models, Genetic
Phylogeny
12. Roger  F, Marchandin  H, Jumas-Bilak  E, Kodjo  A, N/A  N/A, Lamy  B,     ( 2012 )

Multilocus genetics to reconstruct aeromonad evolution.

BMC microbiology 12 (N/A)
PMID : 22545815  :   DOI  :   10.1186/1471-2180-12-62     PMC  :   PMC3487998    
Abstract >>
Aeromonas spp. are versatile bacteria that exhibit a wide variety of lifestyles. In an attempt to improve the understanding of human aeromonosis, we investigated whether clinical isolates displayed specific characteristics in terms of genetic diversity, population structure and mode of evolution among Aeromonas spp. A collection of 195 Aeromonas isolates from human, animal and environmental sources was therefore genotyped using multilocus sequence analysis (MLSA) based on the dnaK, gltA, gyrB, radA, rpoB, tsf and zipA genes. The MLSA showed a high level of genetic diversity among the population, and multilocus-based phylogenetic analysis (MLPA) revealed 3 major clades: the A. veronii, A. hydrophila and A. caviae clades, among the eleven clades detected. Lower genetic diversity was observed within the A. caviae clade as well as among clinical isolates compared to environmental isolates. Clonal complexes, each of which included a limited number of strains, mainly corresponded to host-associated subsclusters of strains, i.e., a fish-associated subset within A. salmonicida and 11 human-associated subsets, 9 of which included only disease-associated strains. The population structure was shown to be clonal, with modes of evolution that involved mutations in general and recombination events locally. Recombination was detected in 5 genes in the MLSA scheme and concerned approximately 50% of the STs. Therefore, these recombination events could explain the observed phylogenetic incongruities and low robustness. However, the MLPA globally confirmed the current systematics of the genus Aeromonas. Evolution in the genus Aeromonas has resulted in exceptionally high genetic diversity. Emerging from this diversity, subsets of strains appeared to be host adapted and/or disease specialized" while the A. caviae clade displayed an atypical tempo of evolution among aeromonads. Considering that A. salmonicida has been described as a genetically uniform pathogen that has adapted to fish through evolution from a variable ancestral population, we hypothesize that the population structure of aeromonads described herein suggested an ongoing process of adaptation to specialized niches associated with different degrees of advancement according to clades and clusters."
KeywordMeSH Terms
Environmental Microbiology
Evolution, Molecular
Genetic Variation

331, Shih-Pin Rd., Hsinchu 30062, Taiwan

Phone: +886-3-5223191

E-mail: bcrcweb@firdi.org.tw

web maintainance: +886-3-5223191 ext 593

Copyright © 2018.BCRC All rights reserved.The duplication or use of information and data such as texts or images or any linkage the website at the "bcrc.firdi.org.tw" is only permitted with the indication of the source or with prior approval by the BCRC(Bioresource Collection and Research Center).