Home / BCRC Content / 80584 / 

Return

  Research Article

The information shown in this page was generated using the cross-referenced linkage within public domain database between their strains and BCRC related strains. Usually the information provided from public domain databases varies with diffent confidences and errors, BCRC provides the related information here at best effort, but BCRC doesn't take the responsibility about the correctness of the information provided here.

1. Ke  D, Boissinot  M, Huletsky  A, Picard  FJ, Frenette  J, Ouellette  M, Roy  PH, Bergeron  MG,     ( 2000 )

Evidence for horizontal gene transfer in evolution of elongation factor Tu in enterococci.

Journal of bacteriology 182 (24)
PMID : 11092850  :   DOI  :   10.1128/jb.182.24.6913-6920.2000     PMC  :   PMC94815    
Abstract >>
The elongation factor Tu, encoded by tuf genes, is a GTP binding protein that plays a central role in protein synthesis. One to three tuf genes per genome are present, depending on the bacterial species. Most low-G+C-content gram-positive bacteria carry only one tuf gene. We have designed degenerate PCR primers derived from consensus sequences of the tuf gene to amplify partial tuf sequences from 17 enterococcal species and other phylogenetically related species. The amplified DNA fragments were sequenced either by direct sequencing or by sequencing cloned inserts containing putative amplicons. Two different tuf genes (tufA and tufB) were found in 11 enterococcal species, including Enterococcus avium, Enterococcus casseliflavus, Enterococcus dispar, Enterococcus durans, Enterococcus faecium, Enterococcus gallinarum, Enterococcus hirae, Enterococcus malodoratus, Enterococcus mundtii, Enterococcus pseudoavium, and Enterococcus raffinosus. For the other six enterococcal species (Enterococcus cecorum, Enterococcus columbae, Enterococcus faecalis, Enterococcus sulfureus, Enterococcus saccharolyticus, and Enterococcus solitarius), only the tufA gene was present. Based on 16S rRNA gene sequence analysis, the 11 species having two tuf genes all have a common ancestor, while the six species having only one copy diverged from the enterococcal lineage before that common ancestor. The presence of one or two copies of the tuf gene in enterococci was confirmed by Southern hybridization. Phylogenetic analysis of tuf sequences demonstrated that the enterococcal tufA gene branches with the Bacillus, Listeria, and Staphylococcus genera, while the enterococcal tufB gene clusters with the genera Streptococcus and Lactococcus. Primary structure analysis showed that four amino acid residues encoded within the sequenced regions are conserved and unique to the enterococcal tufB genes and the tuf genes of streptococci and Lactococcus lactis. The data suggest that an ancestral streptococcus or a streptococcus-related species may have horizontally transferred a tuf gene to the common ancestor of the 11 enterococcal species which now carry two tuf genes.
KeywordMeSH Terms
Evolution, Molecular
Gene Transfer, Horizontal
Genes, Bacterial
2. Goh  SH, Facklam  RR, Chang  M, Hill  JE, Tyrrell  GJ, Burns  EC, Chan  D, He  C, Rahim  T, Shaw  C, Hemmingsen  SM,     ( 2000 )

Identification of Enterococcus species and phenotypically similar Lactococcus and Vagococcus species by reverse checkerboard hybridization to chaperonin 60 gene sequences.

Journal of clinical microbiology 38 (11)
PMID : 11060051  :   PMC  :   PMC87524    
Abstract >>
Data from four recent studies (S. H. Goh et al., J. Clin. Microbiol. 36:2164-2166, 1998; S. H. Goh et al., J. Clin. Microbiol. 34:818-823, 1996; S. H. Goh et al., J. Clin. Microbiol. 35:3116-3121, 1997; A. Y. C. Kwok et al., Int. J. Syst. Bacteriol. 49:1181-1192, 1999) suggest that an approximately 600-bp region of the chaperonin 60 (Cpn60) gene, amplified by PCR with a single pair of degenerate primers, has utility as a potentially universal target for bacterial identification (ID). This Cpn60 gene ID method correctly identified isolates representative of numerous staphylococcal species and Streptococcus iniae, a human and animal pathogen. We report herein that this method enabled us to distinguish clearly between 17 Enterococcus species (Enterococcus asini, Enterococcus rattus, Enterococcus dispar, Enterococcus gallinarum, Enterococcus hirae, Enterococcus durans, Enterococcus cecorum, Enterococcus faecalis, Enterococcus mundtii, Enterococcus casseliflavus, Enterococcus faecium, Enterococcus malodoratus, Enterococcus raffinosus, Enterococcus avium, Enterococcus pseudoavium, Enterococcus new sp. strain Facklam, and Enterococcus saccharolyticus), and Vagococcus fluvialis, Lactococcus lactis, and Lactococcus garvieae. From 123 blind-tested samples, only two discrepancies were observed between the Facklam and Collins phenotyping method (R. R. Facklam and M. D. Collins, J. Clin. Microbiol. 27:731-734, 1989) and the Cpn60 ID method. In each case, the discrepancies were resolved in favor of the Cpn60 ID method. The species distributions of the 123 blind-tested isolates were Enterococcus new sp. strain Facklam (ATCC 700913), 3; E. asini, 1; E. rattus, 4; E. dispar, 2; E. gallinarum, 20; E. hirae, 9; E. durans, 9; E. faecalis, 12; E. mundtii, 3; E. casseliflavus, 8; E. faecium, 25; E. malodoratus, 3; E. raffinosus, 8; E. avium, 4; E. pseudoavium, 1; an unknown Enterococcus clinical isolate, sp. strain R871; Vagococcus fluvialis, 4; Lactococcus garvieae, 3; Lactococcus lactis, 3; Leuconostoc sp., 1; and Pediococcus sp., 1. The Cpn60 gene ID method, coupled with reverse checkerboard hybridization, is an effective method for the identification of Enterococcus and related organisms.
KeywordMeSH Terms
3. Quesnes  G, Poyart  C,     ( 2000 )

Sequencing the gene encoding manganese-dependent superoxide dismutase for rapid species identification of enterococci.

Journal of clinical microbiology 38 (1)
PMID : 10618129  :   PMC  :   PMC88737    
Abstract >>
Simple PCR and sequencing assays that utilize a single pair of degenerate primers were used to characterize a 438-bp-long DNA fragment internal (sodA(int)) to the sodA gene encoding the manganese-dependent superoxide dismutase in 19 enterococcal type strains (Enterococcus avium, Enterococcus casseliflavus, Enterococcus cecorum, Enterococcus columbae, Enterococcus dispar, Enterococcus durans, Enterococcus faecalis, Enterococcus faecium, Enterococcus flavescens, Enterococcus gallinarum, Enterococcus hirae, Enterococcus malodoratus, Enterococcus mundtii, Enterococcus pseudoavium, Enterococcus raffinosus, Enterococcus saccharolyticus, Enterococcus seriolicida, Enterococcus solitarius, and Enterococcus sulfureus). Sequence analysis of the sodA(int) fragments enabled reliable identification of 18 enterococcal species, including E. casseliflavus-E. flavescens and E. gallinarum. The sodA(int) fragments of E. casseliflavus and E. flavescens were almost identical (99.5% sequence identity), which suggests that they should be associated in a single species. Our results confirm that the sodA gene constitutes a more discriminative target sequence than 16S rRNA gene in differentiating closely related bacterial species.
KeywordMeSH Terms
Genes, Bacterial
4. Naser  S, Thompson  FL, Hoste  B, Gevers  D, Vandemeulebroecke  K, Cleenwerck  I, Thompson  CC, Vancanneyt  M, Swings  J,     ( 2005 )

Phylogeny and identification of Enterococci by atpA gene sequence analysis.

Journal of clinical microbiology 43 (5)
PMID : 15872246  :   DOI  :   10.1128/JCM.43.5.2224-2230.2005     PMC  :   PMC1153757    
Abstract >>
The relatedness among 91 Enterococcus strains representing all validly described species was investigated by comparing a 1,102-bp fragment of atpA, the gene encoding the alpha subunit of ATP synthase. The relationships observed were in agreement with the phylogeny inferred from 16S rRNA gene sequence analysis. However, atpA gene sequences were much more discriminatory than 16S rRNA for species differentiation. All species were differentiated on the basis of atpA sequences with, at a maximum, 92% similarity. Six members of the Enterococcus faecium species group (E. faecium, E. hirae, E. durans, E. villorum, E. mundtii, and E. ratti) showed > 99% 16S rRNA gene sequence similarity, but the highest value of atpA gene sequence similarity was only 89.9%. The intraspecies atpA sequence similarities for all species except E. faecium strains varied from 98.6 to 100%; the E. faecium strains had a lower atpA sequence similarity of 96.3%. Our data clearly show that atpA provides an alternative tool for the phylogenetic study and identification of enterococci.
KeywordMeSH Terms
5. Hill  JE, Penny  SL, Crowell  KG, Goh  SH, Hemmingsen  SM,     ( 2004 )

cpnDB: a chaperonin sequence database.

Genome research 14 (8)
PMID : 15289485  :   DOI  :   10.1101/gr.2649204     PMC  :   PMC509277    
Abstract >>
Type I chaperonins are molecular chaperones present in virtually all bacteria, some archaea and the plastids and mitochondria of eukaryotes. Sequences of cpn60 genes, encoding 60-kDa chaperonin protein subunits (CPN60, also known as GroEL or HSP60), are useful for phylogenetic studies and as targets for detection and identification of organisms. Conveniently, a 549-567-bp segment of the cpn60 coding region can be amplified with universal PCR primers. Here, we introduce cpnDB, a curated collection of cpn60 sequence data collected from public databases or generated by a network of collaborators exploiting the cpn60 target in clinical, phylogenetic, and microbial ecology studies. The growing database currently contains approximately 2000 records covering over 240 genera of bacteria, eukaryotes, and archaea. The database also contains over 60 sequences for the archaeal Type II chaperonin (thermosome, a homolog of eukaryotic cytoplasmic chaperonin) from 19 archaeal genera. As the largest curated collection of sequences available for a protein-encoding gene, cpnDB provides a resource for researchers interested in exploiting the power of cpn60 as a diagnostic or as a target for phylogenetic or microbial ecology studies, as well as those interested in broader subjects such as lateral gene transfer and codon usage. We built cpnDB from open source tools and it is available at http://cpndb.cbr.nrc.ca.
KeywordMeSH Terms
6. Drancourt  M, Roux  V, Fournier  PE, Raoult  D,     ( 2004 )

rpoB gene sequence-based identification of aerobic Gram-positive cocci of the genera Streptococcus, Enterococcus, Gemella, Abiotrophia, and Granulicatella.

Journal of clinical microbiology 42 (2)
PMID : 14766807  :   DOI  :   10.1128/jcm.42.2.497-504.2004     PMC  :   PMC344509    
Abstract >>
We developed a new molecular tool based on rpoB gene (encoding the beta subunit of RNA polymerase) sequencing to identify streptococci. We first sequenced the complete rpoB gene for Streptococcus anginosus, S. equinus, and Abiotrophia defectiva. Sequences were aligned with these of S. pyogenes, S. agalactiae, and S. pneumoniae available in GenBank. Using an in-house analysis program (SVARAP), we identified a 740-bp variable region surrounded by conserved, 20-bp zones and, by using these conserved zones as PCR primer targets, we amplified and sequenced this variable region in an additional 30 Streptococcus, Enterococcus, Gemella, Granulicatella, and Abiotrophia species. This region exhibited 71.2 to 99.3% interspecies homology. We therefore applied our identification system by PCR amplification and sequencing to a collection of 102 streptococci and 60 bacterial isolates belonging to other genera. Amplicons were obtained in streptococci and Bacillus cereus, and sequencing allowed us to make a correct identification of streptococci. Molecular signatures were determined for the discrimination of closely related species within the S. pneumoniae-S. oralis-S. mitis group and the S. agalactiae-S. difficile group. These signatures allowed us to design a S. pneumoniae-specific PCR and sequencing primer pair.
KeywordMeSH Terms
7.     ( 1996 )

Evolution of structure and substrate specificity in D-alanine:D-alanine ligases and related enzymes.

Journal of molecular evolution 42 (6)
PMID : 8662022  :  
Abstract >>
The D-alanine:D-alanine-ligase-related enzymes can have three preferential substrate specificities. Usually, these enzymes synthesize D-alanyl-D-alanine. In vancomycin-resistant Gram-positive bacteria, structurally related enzymes synthesize D-alanyl-D-lactate or d-alanyl-d-serine. The sequence of internal fragments of eight structural d-alanine:d-alanine ligase genes from enterococci has been determined. Alignment of the deduced amino acid sequences with those of other related enzymes from Gram-negative and Gram-positive bacteria revealed the presence of four distinct sequence patterns in the putative substrate-binding sites, each correlating with specificity to a particular substrate (D-alanine:D-lactate ligases exhibited two patterns). Phylogenetic analysis showed different clusters. The enterococcal subtree was largely superimposable on that derived from 16S rRNA sequences. In lactic acid bacteria, structural divergence due to differences in substrate specificity was observed. Glycopeptide resistance proteins VanA and VanB, the VanC-type ligases, and DdlA and DdlB from enteric bacteria and Haemophilus influenzae constituted separate clusters.
KeywordMeSH Terms
Evolution, Molecular

331, Shih-Pin Rd., Hsinchu 30062, Taiwan

Phone: +886-3-5223191

E-mail: bcrcweb@firdi.org.tw

web maintainance: +886-3-5223191 ext 593

Copyright © 2018.BCRC All rights reserved.The duplication or use of information and data such as texts or images or any linkage the website at the "bcrc.firdi.org.tw" is only permitted with the indication of the source or with prior approval by the BCRC(Bioresource Collection and Research Center).