BCRC Strain Collection Catalog & Shopping Cart

  Home / BCRC Content / 80630 / 

Return

  Research Article

The information shown in this page was generated using the cross-referenced linkage within public domain database between their strains and BCRC related strains. Usually the information provided from public domain databases varies with different confidences and errors, BCRC provides the related information here at best effort, but BCRC doesn't take the responsibility about the correctness of the information provided here.

1. Dandie  CE, Burton  DL, Zebarth  BJ, Trevors  JT, Goyer  C,     ( 2007 )

Analysis of denitrification genes and comparison of nosZ, cnorB and 16S rDNA from culturable denitrifying bacteria in potato cropping systems.

Systematic and applied microbiology 30 (2)
PMID : 16793234  :   DOI  :   10.1016/j.syapm.2006.05.002    
Abstract >>
Bacterial denitrification in agricultural soils is a major source of nitrous oxide, a potent greenhouse gas. This study examined the culturable bacterial population of denitrifiers in arable field soils in potato (Solanum tuberosum L.) production and denitrification genes (nir, nor and nos) and 16S rDNA in those isolates. Enrichments for culturable denitrifiers yielded 31 diverse isolates that were then analysed for denitrification genes. The nitrous oxide reductase (nosZ) gene was found in all isolates. The majority of isolates (approximately 90%) contained the cnorB nitric oxide reductase gene, with the remainder containing the qnorB gene. Nitrite reductase genes (nirS and nirK) were amplifiable from most of the isolates, and were segregated between species similar to previously isolated denitrifiers. Isolated strains were preliminarily identified using fatty acid methyl ester analysis and further identified using 16S rDNA sequencing. The majority of isolates (21) were classified as Pseudomonas sp., with smaller groups of isolates being most similar to Bosea spp. (4), Achromobacter spp. (4) and two isolates closely related to Sinorhizobium/Ensifer spp. Phylogenetic trees were compared among nosZ, cnorB and 16S rDNA genes for a subset of Pseudomonas strains. The trees were mostly congruent, but some Pseudomonas sp. isolates grouped differently depending on the gene analysed, indicating potential horizontal gene transfer of denitrification genes. Although Bosea spp. are known denitrifiers, to the best of our knowledge this is the first report of isolation and sequencing of denitrification genes from this bacterial genus.
KeywordMeSH Terms
2. Ait Tayeb  L, Ageron  E, Grimont  F, Grimont  PA,     ( N/A )

Molecular phylogeny of the genus Pseudomonas based on rpoB sequences and application for the identification of isolates.

Research in microbiology 156 (5��6��)
PMID : 15950132  :   DOI  :   10.1016/j.resmic.2005.02.009    
Abstract >>
Phylogenetic relationships within the genus Pseudomonas were examined by comparing partial (about 1000 nucleotides) rpoB gene sequences. A total of 186 strains belonging to 75 species of Pseudomonas sensu stricto and related species were studied. The phylogenetic resolution of the rpoB tree was approximately three times higher than that of the rrs tree. Ribogroups published earlier correlated well with rpoB sequence clusters. The rpoB sequence database generated by this study was used for identification. A total of 89 isolates (79.5%) were identified to a named species, while 16 isolates (14.3%) corresponded to unnamed species, and 7 isolates (6.2%) had uncertain affiliation. rpoB sequencing is now being used for routine identification of Pseudomonas isolates in our laboratory.
KeywordMeSH Terms
Phylogeny
3. Bodilis  J, Nsigue Meilo  S, Cornelis  P, De Vos  P, Barray  S,     ( 2011 )

A long-branch attraction artifact reveals an adaptive radiation in pseudomonas.

Molecular biology and evolution 28 (10)
PMID : 21504889  :   DOI  :   10.1093/molbev/msr099    
Abstract >>
A significant proportion of protein-encoding gene phylogenies in bacteria is inconsistent with the species phylogeny. It was usually argued that such inconsistencies resulted from lateral transfers. Here, by further studying the phylogeny of the oprF gene encoding the major surface protein in the bacterial Pseudomonas genus, we found that the incongruent tree topology observed results from a long-branch attraction (LBA) artifact and not from lateral transfers. LBA in the oprF phylogeny could be explained by the faster evolution in a lineage adapted to the rhizosphere, highlighting an unexpected adaptive radiation. We argue that analysis of such artifacts in other inconsistent bacterial phylogenies could be a valuable tool in molecular ecology to highlight cryptic adaptive radiations in microorganisms.
KeywordMeSH Terms
4. Kosina  M, ?vec  P, ?ernohlávková  J, Barták  M, Snopková  K, De Vos  P, Sedlá?ek  I,     ( 2016 )

Description of Pseudomonas gregormendelii sp. nov., a Novel Psychrotrophic Bacterium from James Ross Island, Antarctica.

Current microbiology 73 (1)
PMID : 27032403  :   DOI  :   10.1007/s00284-016-1029-5    
Abstract >>
During the microbiological research performed within the scope of activities of Czech expeditions based at the Johann Gregor Mendel Station at James Ross Island, Antarctica, two psychrotrophic gram-stain negative non-fluorescent strains CCM 8506T and CCM 8507 from soil were extensively characterized using genotypic and phenotypic methods. Initial characterization using ribotyping with HindIII restriction endonuclease and phenotyping implies that both isolates belong to a single Pseudomonas species. Sequencing of rrs, rpoB, rpoD and glnA genes of strain CCM 8506(T) confirmed affiliation of investigated strains within the genus Pseudomonas. Further investigation using automated ribotyping with EcoRI (RiboPrinter(?) Microbial Characterisation System), whole-cell protein profiling using the Agilent 2100 Bioanalyzer system, extensive biochemical testing and DNA-DNA hybridization experiments confirmed that both investigated strains are members of a single taxon which is clearly separated from all hitherto described Pseudomonas spp. Based on all findings, we describe a novel species Pseudomonas gregormendelii sp. nov. with the type strain CCM 8506(T) (=LMG 28632T).
KeywordMeSH Terms
Soil Microbiology
5. Vaz-Moreira  I, Nunes  OC, Manaia  CM,     ( 2012 )

Diversity and antibiotic resistance in Pseudomonas spp. from drinking water.

The Science of the total environment 426 (N/A)
PMID : 22521167  :   DOI  :   10.1016/j.scitotenv.2012.03.046    
Abstract >>
Pseudomonas spp. are common inhabitants of aquatic environments, including drinking water. Multi-antibiotic resistance in clinical isolates of P. aeruginosa is widely reported and deeply characterized. However, the information regarding other species and environmental isolates of this genus is scant. This study was designed based on the hypothesis that members of the genus Pseudomonas given their high prevalence, wide distribution in waters and genetic plasticity can be important reservoirs of antibiotic resistance in drinking water. With this aim, the diversity and antibiotic resistance phenotypes of Pseudomonas isolated from different drinking water sources were evaluated. The genotypic diversity analyses were based on six housekeeping genes (16S rRNA, rpoD, rpoB, gyrB, recA and ITS) and on pulsed field gel electrophoresis. Susceptibility to 21 antibiotics of eight classes was tested using the ATB PSE EU (08) and disk diffusion methods. Pseudomonas spp. were isolated from 14 of the 32 sampled sites. A total of 55 non-repetitive isolates were affiliated to twenty species. Although the same species were isolated from different sampling sites, identical genotypes were never observed in distinct types of water (water treatment plant/distribution system, tap water, cup fillers, biofilm, and mineral water). In general, the prevalence of antibiotic resistance was low and often the resistance patterns were related with the species and/or the strain genotype. Resistance to ticarcillin, ticarcillin with clavulanic acid, fosfomycin and cotrimoxazol were the most prevalent (69-84%). No resistance to piperacillin, levofloxacin, ciprofloxacin, tetracycline, gentamicin, tobramycin, amikacin, imipenem or meropenem was observed. This study demonstrates that Pseudomonas spp. are not so widespread in drinking water as commonly assumed. Nevertheless, it suggests that water Pseudomonas can spread acquired antibiotic resistance, preferentially via vertical transmission.
KeywordMeSH Terms
Biodiversity
Water Microbiology
6.     ( 2013 )

Evaluation of oprI and oprL genes as molecular markers for the genus Pseudomonas and their use in studying the biodiversity of a small Belgian River.

Research in microbiology 164 (3)
PMID : 23246592  :   DOI  :   10.1016/j.resmic.2012.12.001    
Abstract >>
A multiplex PCR based on oprI and oprL, coding for the outer membrane lipoprotein I and the peptidoglycan-associated lipoprotein OprL, respectively, was developed for the detection of Pseudomonas strains from a bacterial collection isolated from a small river. To study the diversity of these Pseudomonas isolates, an oprI-oprL gene sequence database of 94 Pseudomonas type strains was constructed. Phylogenetic analysis of the concatenated oprI and oprL gene sequences of the Pseudomonas type strains showed that they were largely congruent with the classification based on the MLSA approach based on 16S rRNA, gyrB, rpoB and rpoD gene sequences of Mulet et al. in 2010. Identification of the isolates demonstrated a high diversity of Pseudomonas isolates at the source of the river located in a forest of which most isolates belonged to the Pseudomonas fluorescens lineage. On the other hand, the Pseudomonas population isolated at an anthropized site at the mouth of the river, receiving waste water from both households and industry, was very different and contained many Pseudomonas aeruginosa isolates.
KeywordMeSH Terms

331, Shih-Pin Rd., Hsinchu 30062, Taiwan

Phone: +886-3-5223191

E-mail: bcrcweb@firdi.org.tw

web maintainance: +886-3-5223191 ext 593

Copyright © 2018.BCRC All rights reserved.The duplication or use of information and data such as texts or images or any linkage the website at the "bcrc.firdi.org.tw" is only permitted with the indication of the source or with prior approval by the BCRC(Bioresource Collection and Research Center).