BCRC Strain Collection Catalog & Shopping Cart

  Home / BCRC Content / 80041 / 

Return

  Taxonomy Citation

The information shown in this page was generated using the cross-referenced linkage within public domain database between their strains and BCRC related strains. Usually the information provided from public domain databases varies with different confidences and errors, BCRC provides the related information here at best effort, but BCRC doesn't take the responsibility about the correctness of the information provided here.

Taxonomy Citation ID Reference
8931 Jian  W, Zhu  L, Dong  X,     ( 2001 )

New approach to phylogenetic analysis of the genus Bifidobacterium based on partial HSP60 gene sequences.

International journal of systematic and evolutionary microbiology 51 (Pt 5)
PMID : 11594590 DOI  :   10.1099/00207713-51-5-1633    
Abstract >>
The partial 60 kDa heat-shock protein (HSP60) genes of 36 Bifidobacterium strains representing 30 different Bifidobacterium species and subspecies and of the type strain of Gardnerella vaginalis were cloned and sequenced using a pair of universal degenerate HSP60 PCR primers. The HSP60 DNA sequence similarities were determined for the taxa at various ranks as follows: 99.4-100% within the same species, 96% at the subspecies level, and 73-96% (mean 85%) at the interspecies level (and 98% in the case of two groups of closely related species, Bifidobacterium animalis and Bifidobacterium lactis, Bifidobacterium infantis, Bifidobacterium longum and Bifidobacterium suis, whose 165 rRNA sequence similarities are all above 99%). The HSP60 DNA sequence similarities between different Bifidobacterium species and G. vaginalis, a closely related bacterium according to 16S rRNA analysis, ranged from 71 to 79% (mean 75%). Although the topology of the phylogenetic tree constructed using the HSP60 sequences determined was basically similar to that for 16S rRNA, it seemed to be more clear-cut for species delineation, and the clustering was better correlated with the DNA base composition (mol% G+C) than that of the 16S rRNA tree. In the HSP60 phylogenetic tree, all of the high-G+C (55-67 mol%) bifidobacteria were grouped into one cluster, whereas the low-G+C species Bifidobacterium inopinatum (45 mol %) formed a separate cluster with G. vaginalis (42 mol%) and Bifidobacterium denticolens (55 mol%); a Bifidobacterium species of intermediate G+C content formed another cluster between the two. This study demonstrates that the highly conserved and ubiquitous HSP60 gene is an accurate and convenient tool for phylogenetic analysis of the genus Bifidobacterium.
KeywordMeSH Terms
Phylogeny
Sequence Analysis, DNA
10616 Jian  W, Dong  X,     ( 2002 )

Transfer of Bifidobacterium inopinatum and Bifidobacterium denticolens to Scardovia inopinata gen. nov., comb. nov., and Parascardovia denticolens gen. nov., comb. nov., respectively.

International journal of systematic and evolutionary microbiology 52 (Pt 3)
PMID : 12054242 DOI  :   10.1099/00207713-52-3-809    
Abstract >>
Bifidobacterium inopinatum Crociani et al. 1996 and Bifidobacterium denticolens Crociani et al. 1996 have distinct phenotypic characteristics and low G+C contents compared with other bifidobacteria. In the 16S rRNA phylogenetic tree, these two species grouped in an independent subcluster. In our previous work, partial heat-shock protein 60 (HSP60) gene-sequence analysis also indicated that these two species had distinct taxonomic positions. In this work, the complete HSP60 genes of five representative bacterial strains were sequenced by using an inverse PCR method. The complete sequence similarities turned out to be at the same level as those of the partial genes, thus confirming the result based on partial sequence analysis. On the basis of all the evidence mentioned above, it is proposed that these two species should be transferred to two new genera as Scardovia inopinata gen. nov., comb. nov., and Parascardovia denticolens gen. nov., comb. nov.
KeywordMeSH Terms
1431     ( 1996 )

Bifidobacterium inopinatum sp. nov. and Bifidobacterium denticolens sp. nov., two new species isolated from human dental caries.

International journal of systematic bacteriology 46 (2)
PMID : 8934909 DOI  :   10.1099/00207713-46-2-564    
Abstract >>
In a previous investigation of bifidobacteria isolated from human dental caries (V. Scardovi and F. Crociani, Int. J. Syst. Bacteriol. 24:6-20, 1974), 40 strains were assigned to the new species Bifidobacterium dentium. In this study we examined 70 new strains of bifidobacteria isolated from dental caries. The morphological characteristics, biochemical reactions, fermentation patterns, end products from glucose metabolism, protein electrophoretic patterns, levels of DNA hybridization, and DNA G+C contents of these organisms revealed that they belong to three different taxa. One of these taxa was identified as B. dentium. The other two are described as the following new Bifidobacterium species in this paper: Bifidobacterium inopinatum (type strain, DSM 10107) and Bifidobacterium denticolens (type strain, DSM 10105). The two new species differ from other Bifidobacterium species in their morphological characteristics (especially B. inopinatum, with its very small coccoid cells), in their carbohydrate fermentation patterns (most strains ferment dextran, and B. inopinatum does not ferment galactose), and in their DNA base compositions (especially B. inopinatum).
KeywordMeSH Terms

331, Shih-Pin Rd., Hsinchu 30062, Taiwan

Phone: +886-3-5223191

E-mail: bcrcweb@firdi.org.tw

web maintainance: +886-3-5223191 ext 593

Copyright © 2018.BCRC All rights reserved.The duplication or use of information and data such as texts or images or any linkage the website at the "bcrc.firdi.org.tw" is only permitted with the indication of the source or with prior approval by the BCRC(Bioresource Collection and Research Center).