BCRC Strain Collection Catalog & Shopping Cart

  Home / BCRC Content / 80863 / 

Return

  Taxonomy Citation

The information shown in this page was generated using the cross-referenced linkage within public domain database between their strains and BCRC related strains. Usually the information provided from public domain databases varies with different confidences and errors, BCRC provides the related information here at best effort, but BCRC doesn't take the responsibility about the correctness of the information provided here.

Taxonomy Citation ID Reference
43801 Dsouza  M, Taylor  MW, Turner  SJ, Aislabie  J,     ( 2014 )

Genome-based comparative analyses of Antarctic and temperate species of Paenibacillus.

PloS one 9 (10)
PMID : 25285990 DOI  :   10.1371/journal.pone.0108009     PMC  :   PMC4186907    
Abstract >>
Antarctic soils represent a unique environment characterised by extremes of temperature, salinity, elevated UV radiation, low nutrient and low water content. Despite the harshness of this environment, members of 15 bacterial phyla have been identified in soils of the Ross Sea Region (RSR). However, the survival mechanisms and ecological roles of these phyla are largely unknown. The aim of this study was to investigate whether strains of Paenibacillus darwinianus owe their resilience to substantial genomic changes. For this, genome-based comparative analyses were performed on three P. darwinianus strains, isolated from gamma-irradiated RSR soils, together with nine temperate, soil-dwelling Paenibacillus spp. The genome of each strain was sequenced to over 1,000-fold coverage, then assembled into contigs totalling approximately 3 Mbp per genome. Based on the occurrence of essential, single-copy genes, genome completeness was estimated at approximately 88%. Genome analysis revealed between 3,043-3,091 protein-coding sequences (CDSs), primarily associated with two-component systems, sigma factors, transporters, sporulation and genes induced by cold-shock, oxidative and osmotic stresses. These comparative analyses provide an insight into the metabolic potential of P. darwinianus, revealing potential adaptive mechanisms for survival in Antarctic soils. However, a large proportion of these mechanisms were also identified in temperate Paenibacillus spp., suggesting that these mechanisms are beneficial for growth and survival in a range of soil environments. These analyses have also revealed that the P. darwinianus genomes contain significantly fewer CDSs and have a lower paralogous content. Notwithstanding the incompleteness of the assemblies, the large differences in genome sizes, determined by the number of genes in paralogous clusters and the CDS content, are indicative of genome content scaling. Finally, these sequences are a resource for further investigations into the expression of physiological attributes that enable survival under extreme conditions and selection processes that affect prokaryotic genome evolution.
KeywordMeSH Terms
36359 Dsouza  M, Taylor  MW, Ryan  J, MacKenzie  A, Lagutin  K, Anderson  RF, Turner  SJ, Aislabie  J,     ( 2014 )

Paenibacillus darwinianus sp. nov., isolated from gamma-irradiated Antarctic soil.

International journal of systematic and evolutionary microbiology 64 (Pt 4)
PMID : 24449790 DOI  :   10.1099/ijs.0.056697-0     DOI  :   10.1099/ijs.0.056697-0    
Abstract >>
A novel bacterium, strain Br(T), was isolated from gamma-irradiated soils of the Britannia drift, Lake Wellman Region, Antarctica. This isolate was rod-shaped, endospore forming, Gram-stain-variable, catalase-positive, oxidase-negative and strictly aerobic. Cells possessed a monotrichous flagellum. Optimal growth was observed at 18 �XC, pH 7.0 in PYGV or R2A broth. The major cellular fatty acid was anteiso-C15 : 0 (63.4 %). Primary identified lipids included phosphatidylethanolamine, diphosphatidylglycerol and phosphatidylglycerol. Total phospholipid was 60 % (w/w) of the total lipid extract. MK-7 was the dominant isoprenoid quinone. The genomic DNA G+C content was 55.6 mol%. Based on 16S rRNA gene sequence similarity, strain Br(T) clusters within the genus Paenibacillus with similarity values ranging from 93.9 to 95.1 %. Phylogenetic analyses by maximum-likelihood, maximum-parsimony and neighbour-joining methods revealed that strain Br(T) clusters with Paenibacillus daejeonensis (AF290916), Paenibacillus tarimensis (EF125184) and Paenibacillus pinihumi (GQ423057), albeit with weak bootstrap support. On the basis of phenotypic, chemotaxonomic and phylogenetic characteristics, we propose that strain Br(T) represents a novel species, Paenibacillus darwinianus sp. nov. The type strain is Br(T) (= DSM 27245(T) = ICMP 19912(T)).
KeywordMeSH Terms
Phylogeny
Soil Microbiology
Phylogeny
Soil Microbiology

331, Shih-Pin Rd., Hsinchu 30062, Taiwan

Phone: +886-3-5223191

E-mail: bcrcweb@firdi.org.tw

web maintainance: +886-3-5223191 ext 593

Copyright © 2018.BCRC All rights reserved.The duplication or use of information and data such as texts or images or any linkage the website at the "bcrc.firdi.org.tw" is only permitted with the indication of the source or with prior approval by the BCRC(Bioresource Collection and Research Center).