Home / BCRC Content / 80943 / 


  Taxonomy Citation

The information shown in this page was generated using the cross-referenced linkage within public domain database between their strains and BCRC related strains. Usually the information provided from public domain databases varies with diffent confidences and errors, BCRC provides the related information here at best effort, but BCRC doesn't take the responsibility about the correctness of the information provided here.

Taxonomy Citation ID Reference
9569     ( 1998 )

Desulfovibrio aespoeensis sp. nov., a mesophilic sulfate-reducing bacterium from deep groundwater at Asp? hard rock laboratory, Sweden.

International journal of systematic bacteriology 48 Pt 1 (N/A)
PMID : 9542102 DOI  :   10.1099/00207713-48-1-311    
Abstract >>
A sulfate-reducing bacterium, strain Aspo-2, was isolated from granitic groundwater sampled at a depth of 600 m. This and other strains of SRB frequently occur in the deep granitic rock aquifers studied. On the basis of its morphological, physiological and genotypical properties, and its unique habitat, we propose strain Aspo-2 as a new species of the genus Desulfovibrio, Desulfovibrio aespoeensis (DSM 10631T).
KeywordMeSH Terms
51746 Cao  J, Gayet  N, Zeng  X, Shao  Z, Jebbar  M, Alain  K,     ( 2016 )

Pseudodesulfovibrio indicus gen. nov., sp. nov., a piezophilic sulfate-reducing bacterium from the Indian Ocean and reclassification of four species of the genus Desulfovibrio.

International journal of systematic and evolutionary microbiology 66 (10)
PMID : 27392787 DOI  :   10.1099/ijsem.0.001286    
Abstract >>
A novel sulfate-reducing bacterium, strain J2T, was isolated from a serpentinized peridotite sample from the Indian Ocean. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain J2T clustered with the genus Desulfovibrio within the family Desulfovibrionaceae, but it showed low similarity (87.95 %) to the type species Desulfovibrio desulfuricans DSM 642T. It was most closely related to Desulfovibrio portus MSL79T (96.96 %), followed by Desulfovibrio aespoeensis Aspo-2T (96.11 %), Desulfovibrio piezophilus C1TLV30T (96.04 %) and Desulfovibrio profundus DSM 11384T (95.17 %). Other available sequences shared less than 93.33 % 16S rRNA gene sequence similarity. Cells were Gram-staining-negative, anaerobic, motile vibrios (2-6��0.4-0.6 ?m). Growth was observed at salinities ranging from 0.2 to 6 % (optimum 2.5 %), from pH 5 to 8 (optimum pH 6.5-7) and at temperatures between 9 and 40 �XC (optimum 30-35 �XC). J2T was piezophilic, growing optimally at 10 MPa (range 0-30 MPa). J2T used lactate, malate, pyruvate, formate and hydrogen as energy sources. Sulfate, thiosulfate, sulfite, fumarate and nitrate were used as terminal electron acceptors. Lactate and pyruvate were fermented. The main fatty acids were iso-C15 : 0, anteiso-C15 : 0, summed feature 9 (iso-C17 : 1�s9c and/or C16 : 0 10-methyl) and iso-C17 : 0. The DNA G+C content of strain J2T was 63.5 mol%. The combined genotypic and phenotypic data show that strain J2T represents a novel species of a novel genus in the family Desulfovibrionaceae, for which the name Pseudodesulfovibrio indicus gen. nov., sp. nov. is proposed, with the type strain J2T (=MCCC 1A01867T = DSM 101483T). We also propose the reclassification of D. piezophilus as Pseudodesulfovibrio piezophilus comb. nov., D. profundus as Pseudodesulfovibrio profundus comb. nov., D. portus as Pseudodesulfovibrio portus comb. nov. and D. aespoeensis as Pseudodesulfovibrio aespoeensis comb. nov.
KeywordMeSH Terms

331, Shih-Pin Rd., Hsinchu 30062, Taiwan

Phone: +886-3-5223191

E-mail: bcrcweb@firdi.org.tw

web maintainance: +886-3-5223191 ext 593

Copyright © 2018.BCRC All rights reserved.The duplication or use of information and data such as texts or images or any linkage the website at the "bcrc.firdi.org.tw" is only permitted with the indication of the source or with prior approval by the BCRC(Bioresource Collection and Research Center).