BCRC Strain Collection Catalog & Shopping Cart

  Home / BCRC Content / 12216 / 


  Research Article

The information shown in this page was generated using the cross-referenced linkage within public domain database between their strains and BCRC related strains. Usually the information provided from public domain databases varies with different confidences and errors, BCRC provides the related information here at best effort, but BCRC doesn't take the responsibility about the correctness of the information provided here.

1. Mavrodi  DV, Peever  TL, Mavrodi  OV, Parejko  JA, Raaijmakers  JM, Lemanceau  P, Mazurier  S, Heide  L, Blankenfeldt  W, Weller  DM, Thomashow  LS,     ( 2010 )

Diversity and evolution of the phenazine biosynthesis pathway.

Applied and environmental microbiology 76 (3)
PMID : 20008172  :   DOI  :   10.1128/AEM.02009-09     PMC  :   PMC2813009    
Abstract >>
Phenazines are versatile secondary metabolites of bacterial origin that function in biological control of plant pathogens and contribute to the ecological fitness and pathogenicity of the producing strains. In this study, we employed a collection of 94 strains having various geographic, environmental, and clinical origins to study the distribution and evolution of phenazine genes in members of the genera Pseudomonas, Burkholderia, Pectobacterium, Brevibacterium, and Streptomyces. Our results confirmed the diversity of phenazine producers and revealed that most of them appear to be soil-dwelling and/or plant-associated species. Genome analyses and comparisons of phylogenies inferred from sequences of the key phenazine biosynthesis (phzF) and housekeeping (rrs, recA, rpoB, atpD, and gyrB) genes revealed that the evolution and dispersal of phenazine genes are driven by mechanisms ranging from conservation in Pseudomonas spp. to horizontal gene transfer in Burkholderia spp. and Pectobacterium spp. DNA extracted from cereal crop rhizospheres and screened for the presence of phzF contained sequences consistent with the presence of a diverse population of phenazine producers in commercial farm fields located in central Washington state, which provided the first evidence of United States soils enriched in indigenous phenazine-producing bacteria.
KeywordMeSH Terms
Genes, Bacterial

331, Shih-Pin Rd., Hsinchu 30062, Taiwan

Phone: +886-3-5223191

E-mail: bcrcweb@firdi.org.tw

web maintainance: +886-3-5223191 ext 593

Copyright © 2018.BCRC All rights reserved.The duplication or use of information and data such as texts or images or any linkage the website at the "bcrc.firdi.org.tw" is only permitted with the indication of the source or with prior approval by the BCRC(Bioresource Collection and Research Center).