BCRC Strain Collection Catalog & Shopping Cart

  Home / BCRC Content / 13766 / 

Return

  Research Article

The information shown in this page was generated using the cross-referenced linkage within public domain database between their strains and BCRC related strains. Usually the information provided from public domain databases varies with different confidences and errors, BCRC provides the related information here at best effort, but BCRC doesn't take the responsibility about the correctness of the information provided here.

1. Bergh  S, Uhlén  M,     ( 1992 )

Cloning, analysis, and heterologous expression of a polyketide synthase gene cluster of Streptomyces curacoi.

Biotechnology and applied biochemistry 15 (1)
PMID : 1550661  :  
Abstract >>
Streptomyces curacoi produces curamycin, an antibiotic based on a modified orsellinic acid skeleton that is synthesized by the polyketide pathway. We have cloned, characterized, and partly sequenced a polyketide synthase gene cluster of S. curacoi. The sequence data reveal an organization of open reading frames that is similar to those of other polyketide synthetic clusters, although the biosynthetic products differ considerably in size and structure. We propose that one of the predicted open reading frames (curA) encodes polykeptide synthase, on the basis of its homology with other enzymes with similar functions. Expression of the cloned chromosomal fragment in the heterologous host S. lividans leads to the production of a brown pigment in large quantities. The analysis and expression of the cur genes for detailed molecular studies of the mechanism of polyketide biosynthesis is discussed.
KeywordMeSH Terms
Multigene Family
2. Pet?í?ková  K, Chro?áková  A, Zelenka  T, Chrudimský  T, Pospíšil  S, Pet?í?ek  M, Krištůfek  V,     ( 2015 )

Evolution of cyclizing 5-aminolevulinate synthases in the biosynthesis of actinomycete secondary metabolites: outcomes for genetic screening techniques.

Frontiers in microbiology 6 (N/A)
PMID : 26300877  :   DOI  :   10.3389/fmicb.2015.00814     PMC  :   PMC4525017    
Abstract >>
A combined approach, comprising PCR screening and genome mining, was used to unravel the diversity and phylogeny of genes encoding 5-aminolevulinic acid synthases (ALASs, hemA gene products) in streptomycetes-related strains. In actinomycetes, these genes were believed to be directly connected with the production of secondary metabolites carrying the C5N unit, 2-amino-3-hydroxycyclopent-2-enone, with biological activities making them attractive for future use in medicine and agriculture. Unlike "classical" primary metabolism ALAS, the C5N unit-forming cyclizing ALAS (cALAS) catalyses intramolecular cyclization of nascent 5-aminolevulinate. Specific amino acid sequence changes can be traced by comparison of "classical" ALASs against cALASs. PCR screening revealed 226 hemA gene-carrying strains from 1,500 tested, with 87% putatively encoding cALAS. Phylogenetic analysis of the hemA homologs revealed strain clustering according to putative type of metabolic product, which could be used to select producers of specific C5N compound classes. Supporting information was acquired through analysis of actinomycete genomic sequence data available in GenBank and further genetic or metabolic characterization of selected strains. Comparison of 16S rRNA taxonomic identification and BOX-PCR profiles provided evidence for numerous horizontal gene transfers of biosynthetic genes or gene clusters within actinomycete populations and even from non-actinomycete organisms. Our results underline the importance of environmental and evolutionary data in the design of efficient techniques for identification of novel producers.
KeywordMeSH Terms
5-aminolevulinate synthase
C5N unit
Streptomyces
gene evolution
genetic screening
horizontal gene transfer
secondary metabolites
5-aminolevulinate synthase
C5N unit
Streptomyces
gene evolution
genetic screening
horizontal gene transfer
secondary metabolites
5-aminolevulinate synthase
C5N unit
Streptomyces
gene evolution
genetic screening
horizontal gene transfer
secondary metabolites
5-aminolevulinate synthase
C5N unit
Streptomyces
gene evolution
genetic screening
horizontal gene transfer
secondary metabolites
5-aminolevulinate synthase
C5N unit
Streptomyces
gene evolution
genetic screening
horizontal gene transfer
secondary metabolites
5-aminolevulinate synthase
C5N unit
Streptomyces
gene evolution
genetic screening
horizontal gene transfer
secondary metabolites
5-aminolevulinate synthase
C5N unit
Streptomyces
gene evolution
genetic screening
horizontal gene transfer
secondary metabolites
5-aminolevulinate synthase
C5N unit
Streptomyces
gene evolution
genetic screening
horizontal gene transfer
secondary metabolites
5-aminolevulinate synthase
C5N unit
Streptomyces
gene evolution
genetic screening
horizontal gene transfer
secondary metabolites
5-aminolevulinate synthase
C5N unit
Streptomyces
gene evolution
genetic screening
horizontal gene transfer
secondary metabolites
5-aminolevulinate synthase
C5N unit
Streptomyces
gene evolution
genetic screening
horizontal gene transfer
secondary metabolites
5-aminolevulinate synthase
C5N unit
Streptomyces
gene evolution
genetic screening
horizontal gene transfer
secondary metabolites
5-aminolevulinate synthase
C5N unit
Streptomyces
gene evolution
genetic screening
horizontal gene transfer
secondary metabolites
5-aminolevulinate synthase
C5N unit
Streptomyces
gene evolution
genetic screening
horizontal gene transfer
secondary metabolites
5-aminolevulinate synthase
C5N unit
Streptomyces
gene evolution
genetic screening
horizontal gene transfer
secondary metabolites
5-aminolevulinate synthase
C5N unit
Streptomyces
gene evolution
genetic screening
horizontal gene transfer
secondary metabolites
5-aminolevulinate synthase
C5N unit
Streptomyces
gene evolution
genetic screening
horizontal gene transfer
secondary metabolites
5-aminolevulinate synthase
C5N unit
Streptomyces
gene evolution
genetic screening
horizontal gene transfer
secondary metabolites
5-aminolevulinate synthase
C5N unit
Streptomyces
gene evolution
genetic screening
horizontal gene transfer
secondary metabolites
5-aminolevulinate synthase
C5N unit
Streptomyces
gene evolution
genetic screening
horizontal gene transfer
secondary metabolites
5-aminolevulinate synthase
C5N unit
Streptomyces
gene evolution
genetic screening
horizontal gene transfer
secondary metabolites
5-aminolevulinate synthase
C5N unit
Streptomyces
gene evolution
genetic screening
horizontal gene transfer
secondary metabolites
5-aminolevulinate synthase
C5N unit
Streptomyces
gene evolution
genetic screening
horizontal gene transfer
secondary metabolites
5-aminolevulinate synthase
C5N unit
Streptomyces
gene evolution
genetic screening
horizontal gene transfer
secondary metabolites
5-aminolevulinate synthase
C5N unit
Streptomyces
gene evolution
genetic screening
horizontal gene transfer
secondary metabolites
5-aminolevulinate synthase
C5N unit
Streptomyces
gene evolution
genetic screening
horizontal gene transfer
secondary metabolites
5-aminolevulinate synthase
C5N unit
Streptomyces
gene evolution
genetic screening
horizontal gene transfer
secondary metabolites
5-aminolevulinate synthase
C5N unit
Streptomyces
gene evolution
genetic screening
horizontal gene transfer
secondary metabolites
5-aminolevulinate synthase
C5N unit
Streptomyces
gene evolution
genetic screening
horizontal gene transfer
secondary metabolites
5-aminolevulinate synthase
C5N unit
Streptomyces
gene evolution
genetic screening
horizontal gene transfer
secondary metabolites
5-aminolevulinate synthase
C5N unit
Streptomyces
gene evolution
genetic screening
horizontal gene transfer
secondary metabolites
5-aminolevulinate synthase
C5N unit
Streptomyces
gene evolution
genetic screening
horizontal gene transfer
secondary metabolites
5-aminolevulinate synthase
C5N unit
Streptomyces
gene evolution
genetic screening
horizontal gene transfer
secondary metabolites
5-aminolevulinate synthase
C5N unit
Streptomyces
gene evolution
genetic screening
horizontal gene transfer
secondary metabolites
5-aminolevulinate synthase
C5N unit
Streptomyces
gene evolution
genetic screening
horizontal gene transfer
secondary metabolites
5-aminolevulinate synthase
C5N unit
Streptomyces
gene evolution
genetic screening
horizontal gene transfer
secondary metabolites
3. Everest  GJ, Cook  AE, Kirby  BM, Meyers  PR,     ( 2011 )

Evaluation of the use of recN sequence analysis in the phylogeny of the genus Amycolatopsis.

Antonie van Leeuwenhoek 100 (4)
PMID : 21671192  :   DOI  :   10.1007/s10482-011-9604-z    
Abstract >>
Partial recN gene sequences (>1 kb) were obtained from 35 type strains of the genus Amycolatopsis. Phylogenetic trees were constructed to determine the effectiveness of using this gene to predict taxonomic relationships within the genus. The use of recN sequence analysis as an alternative to DNA-DNA hybridization (DDH) for distinguishing closely related species was also assessed. The recN based phylogeny mostly confirmed the conventional 16S rRNA and gyrB gene-based phylogenies and thus provides further support for these phylogenetic groupings. As is the case for the gyrB gene, pairwise recN sequence similarities cannot be used to predict the DNA relatedness between type strains but the recN genetic distance can be used as a means to assess quickly whether an isolate is likely to represent a new species in the genus Amycolatopsis. A recN genetic distance of >0.04 between two Amycolatopsis strains is proposed to provide a good indication that they belong to different species (and that polyphasic taxonomic characterization of the unknown strain is worth undertaking).
KeywordMeSH Terms
Phylogeny
4. Wang  YS, Zhang  B, Zhu  J, Yang  CL, Guo  Y, Liu  CL, Liu  F, Huang  H, Zhao  S, Liang  Y, Jiao  RH, Tan  RX, Ge  HM,     ( 2018 )

Molecular Basis for the Final Oxidative Rearrangement Steps in Chartreusin Biosynthesis.

Journal of the American Chemical Society 140 (34)
PMID : 30067334  :   DOI  :   10.1021/jacs.8b06623    
Abstract >>
Oxidative rearrangements play key roles in introducing structural complexity and biological activities of natural products biosynthesized by type II polyketide synthases (PKSs). Chartreusin (1) is a potent antitumor polyketide that contains a unique rearranged pentacyclic aromatic bilactone aglycone derived from a type II PKS. Herein, we report an unprecedented dioxygenase, ChaP, that catalyzes the final �\-pyrone ring formation in 1 biosynthesis using flavin-activated oxygen as an oxidant. The X-ray crystal structures of ChaP and two homologues, docking studies, and site-directed mutagenesis provided insights into the molecular basis of the oxidative rearrangement that involves two successive C-C bond cleavage steps followed by lactonization. ChaP is the first example of a dioxygenase that requires a flavin-activated oxygen as a substrate despite lacking flavin binding sites, and represents a new class in the vicinal oxygen chelate enzyme superfamily.
KeywordMeSH Terms

331, Shih-Pin Rd., Hsinchu 30062, Taiwan

Phone: +886-3-5223191

E-mail: bcrcweb@firdi.org.tw

web maintainance: +886-3-5223191 ext 593

Copyright © 2018.BCRC All rights reserved.The duplication or use of information and data such as texts or images or any linkage the website at the "bcrc.firdi.org.tw" is only permitted with the indication of the source or with prior approval by the BCRC(Bioresource Collection and Research Center).