BCRC Strain Collection Catalog & Shopping Cart

  Home / BCRC Content / 14058 / 


  Research Article

The information shown in this page was generated using the cross-referenced linkage within public domain database between their strains and BCRC related strains. Usually the information provided from public domain databases varies with different confidences and errors, BCRC provides the related information here at best effort, but BCRC doesn't take the responsibility about the correctness of the information provided here.

1. Chavagnat  F, Haueter  M, Jimeno  J, Casey  MG,     ( 2002 )

Comparison of partial tuf gene sequences for the identification of lactobacilli.

FEMS microbiology letters 217 (2)
PMID : 12480101  :   DOI  :   10.1111/j.1574-6968.2002.tb11472.x    
Abstract >>
Comparative analysis of partial tuf sequences was evaluated for the identification and differentiation of lactobacilli. Comparison of the amino acid sequences allowed differentiation between species and also between the subspecies of Lactobacillus delbrueckii. The nucleotide sequence comparison allowed differentiation between other subspecies and between some strains. Lactobacilli from several collections and isolates from dairy samples were clearly identified by comparison of short tuf sequences with those of the type strains. In evaluating the taxonomy of the Lactobacillus casei-related taxa, different tuf amino acid signatures are in favour of a classification into three distinct species. The type strain designation for the L. casei species is discussed.
KeywordMeSH Terms
Bacterial Proteins
Genes, Bacterial
2. Chen  YS, Miyashita  M, Suzuki  K, Sato  H, Hsu  JS, Yanagida  F,     ( 2010 )

Lactobacillus pobuzihii sp. nov., isolated from pobuzihi (fermented cummingcordia).

International journal of systematic and evolutionary microbiology 60 (Pt 8)
PMID : 19783610  :   DOI  :   10.1099/ijs.0.016873-0    
Abstract >>
Twenty-one homofermentative lactic acid bacteria were isolated from fermented cummingcordia (pobuzihi), a traditional food in Taiwan. The isolates had identical 16S rRNA gene sequences that were distinct from those of other lactobacilli, and their closest neighbours in the 16S rRNA gene sequence phylogenetic tree were strains of Lactobacillus acidipiscis. Levels of DNA-DNA relatedness between representative pobuzihi isolates and strains of L. acidipiscis were 17% and below. Furthermore, the new isolates could be differentiated clearly from L. acidipiscis NBRC 102163T and NBRC 102164 in terms of acid production from L-arabinose, rhamnose, mannitol, lactose and 5-ketogluconate. It was concluded that the new isolates represent a single novel species of the genus Lactobacillus, for which the name Lactobacillus pobuzihii sp. nov. is proposed. The type strain is E100301T (=RIFY 6501T =NBRC 103219T =KCTC 13174T).
KeywordMeSH Terms
3. Naser  SM, Dawyndt  P, Hoste  B, Gevers  D, Vandemeulebroecke  K, Cleenwerck  I, Vancanneyt  M, Swings  J,     ( 2007 )

Identification of lactobacilli by pheS and rpoA gene sequence analyses.

International journal of systematic and evolutionary microbiology 57 (Pt 12)
PMID : 18048724  :   DOI  :   10.1099/ijs.0.64711-0    
Abstract >>
The aim of this study was to evaluate the use of the phenylalanyl-tRNA synthase alpha subunit (pheS) and the RNA polymerase alpha subunit (rpoA) partial gene sequences for species identification of members of the genus Lactobacillus. Two hundred and one strains representing the 98 species and 17 subspecies were examined. The pheS gene sequence analysis provided an interspecies gap, which in most cases exceeded 10 % divergence, and an intraspecies variation of up to 3 %. The rpoA gene sequences revealed a somewhat lower resolution, with an interspecies gap normally exceeding 5 % and an intraspecies variation of up to 2 %. The combined use of pheS and rpoA gene sequences offers a reliable identification system for nearly all species of the genus Lactobacillus. The pheS and rpoA gene sequences provide a powerful tool for the detection of potential novel Lactobacillus species and synonymous taxa. In conclusion, the pheS and rpoA gene sequences can be used as alternative genomic markers to 16S rRNA gene sequences and have a higher discriminatory power for reliable identification of species of the genus Lactobacillus.
KeywordMeSH Terms
4. Sun  Z, Harris  HM, McCann  A, Guo  C, Argimón  S, Zhang  W, Yang  X, Jeffery  IB, Cooney  JC, Kagawa  TF, Liu  W, Song  Y, Salvetti  E, Wrobel  A, Rasinkangas  P, Parkhill  J, Rea  MC, O'Sullivan  O, Ritari  J, Douillard  FP, Paul Ross  R, Yang  R, Briner  AE, Felis  GE, de Vos  WM, Barrangou  R, Klaenhammer  TR, Caufield  PW, Cui  Y, Zhang  H, O'Toole  PW,     ( 2015 )

Expanding the biotechnology potential of lactobacilli through comparative genomics of 213 strains and associated genera.

Nature communications 6 (N/A)
PMID : 26415554  :   DOI  :   10.1038/ncomms9322     PMC  :   PMC4667430    
Abstract >>
Lactobacilli are a diverse group of species that occupy diverse nutrient-rich niches associated with humans, animals, plants and food. They are used widely in biotechnology and food preservation, and are being explored as therapeutics. Exploiting lactobacilli has been complicated by metabolic diversity, unclear species identity and uncertain relationships between them and other commercially important lactic acid bacteria. The capacity for biotransformations catalysed by lactobacilli is an untapped biotechnology resource. Here we report the genome sequences of 213 Lactobacillus strains and associated genera, and their encoded genetic catalogue for modifying carbohydrates and proteins. In addition, we describe broad and diverse presence of novel CRISPR-Cas immune systems in lactobacilli that may be exploited for genome editing. We rationalize the phylogenomic distribution of host interaction factors and bacteriocins that affect their natural and industrial environments, and mechanisms to withstand stress during technological processes. We present a robust phylogenomic framework of existing species and for classifying new species.
KeywordMeSH Terms

331, Shih-Pin Rd., Hsinchu 30062, Taiwan

Phone: +886-3-5223191

E-mail: bcrcweb@firdi.org.tw

web maintainance: +886-3-5223191 ext 593

Copyright © 2018.BCRC All rights reserved.The duplication or use of information and data such as texts or images or any linkage the website at the "bcrc.firdi.org.tw" is only permitted with the indication of the source or with prior approval by the BCRC(Bioresource Collection and Research Center).