BCRC Strain Collection Catalog & Shopping Cart

  Home / BCRC Content / 14620 / 

Return

  Research Article

The information shown in this page was generated using the cross-referenced linkage within public domain database between their strains and BCRC related strains. Usually the information provided from public domain databases varies with different confidences and errors, BCRC provides the related information here at best effort, but BCRC doesn't take the responsibility about the correctness of the information provided here.

1. Chavagnat  F, Haueter  M, Jimeno  J, Casey  MG,     ( 2002 )

Comparison of partial tuf gene sequences for the identification of lactobacilli.

FEMS microbiology letters 217 (2)
PMID : 12480101  :   DOI  :   10.1111/j.1574-6968.2002.tb11472.x    
Abstract >>
Comparative analysis of partial tuf sequences was evaluated for the identification and differentiation of lactobacilli. Comparison of the amino acid sequences allowed differentiation between species and also between the subspecies of Lactobacillus delbrueckii. The nucleotide sequence comparison allowed differentiation between other subspecies and between some strains. Lactobacilli from several collections and isolates from dairy samples were clearly identified by comparison of short tuf sequences with those of the type strains. In evaluating the taxonomy of the Lactobacillus casei-related taxa, different tuf amino acid signatures are in favour of a classification into three distinct species. The type strain designation for the L. casei species is discussed.
KeywordMeSH Terms
Bacterial Proteins
Genes, Bacterial
2. Hill  JE, Penny  SL, Crowell  KG, Goh  SH, Hemmingsen  SM,     ( 2004 )

cpnDB: a chaperonin sequence database.

Genome research 14 (8)
PMID : 15289485  :   DOI  :   10.1101/gr.2649204     PMC  :   PMC509277    
Abstract >>
Type I chaperonins are molecular chaperones present in virtually all bacteria, some archaea and the plastids and mitochondria of eukaryotes. Sequences of cpn60 genes, encoding 60-kDa chaperonin protein subunits (CPN60, also known as GroEL or HSP60), are useful for phylogenetic studies and as targets for detection and identification of organisms. Conveniently, a 549-567-bp segment of the cpn60 coding region can be amplified with universal PCR primers. Here, we introduce cpnDB, a curated collection of cpn60 sequence data collected from public databases or generated by a network of collaborators exploiting the cpn60 target in clinical, phylogenetic, and microbial ecology studies. The growing database currently contains approximately 2000 records covering over 240 genera of bacteria, eukaryotes, and archaea. The database also contains over 60 sequences for the archaeal Type II chaperonin (thermosome, a homolog of eukaryotic cytoplasmic chaperonin) from 19 archaeal genera. As the largest curated collection of sequences available for a protein-encoding gene, cpnDB provides a resource for researchers interested in exploiting the power of cpn60 as a diagnostic or as a target for phylogenetic or microbial ecology studies, as well as those interested in broader subjects such as lateral gene transfer and codon usage. We built cpnDB from open source tools and it is available at http://cpndb.cbr.nrc.ca.
KeywordMeSH Terms
3. Chen  YS, Miyashita  M, Suzuki  K, Sato  H, Hsu  JS, Yanagida  F,     ( 2010 )

Lactobacillus pobuzihii sp. nov., isolated from pobuzihi (fermented cummingcordia).

International journal of systematic and evolutionary microbiology 60 (Pt 8)
PMID : 19783610  :   DOI  :   10.1099/ijs.0.016873-0    
Abstract >>
Twenty-one homofermentative lactic acid bacteria were isolated from fermented cummingcordia (pobuzihi), a traditional food in Taiwan. The isolates had identical 16S rRNA gene sequences that were distinct from those of other lactobacilli, and their closest neighbours in the 16S rRNA gene sequence phylogenetic tree were strains of Lactobacillus acidipiscis. Levels of DNA-DNA relatedness between representative pobuzihi isolates and strains of L. acidipiscis were 17% and below. Furthermore, the new isolates could be differentiated clearly from L. acidipiscis NBRC 102163T and NBRC 102164 in terms of acid production from L-arabinose, rhamnose, mannitol, lactose and 5-ketogluconate. It was concluded that the new isolates represent a single novel species of the genus Lactobacillus, for which the name Lactobacillus pobuzihii sp. nov. is proposed. The type strain is E100301T (=RIFY 6501T =NBRC 103219T =KCTC 13174T).
KeywordMeSH Terms
4. Naser  SM, Dawyndt  P, Hoste  B, Gevers  D, Vandemeulebroecke  K, Cleenwerck  I, Vancanneyt  M, Swings  J,     ( 2007 )

Identification of lactobacilli by pheS and rpoA gene sequence analyses.

International journal of systematic and evolutionary microbiology 57 (Pt 12)
PMID : 18048724  :   DOI  :   10.1099/ijs.0.64711-0    
Abstract >>
The aim of this study was to evaluate the use of the phenylalanyl-tRNA synthase alpha subunit (pheS) and the RNA polymerase alpha subunit (rpoA) partial gene sequences for species identification of members of the genus Lactobacillus. Two hundred and one strains representing the 98 species and 17 subspecies were examined. The pheS gene sequence analysis provided an interspecies gap, which in most cases exceeded 10 % divergence, and an intraspecies variation of up to 3 %. The rpoA gene sequences revealed a somewhat lower resolution, with an interspecies gap normally exceeding 5 % and an intraspecies variation of up to 2 %. The combined use of pheS and rpoA gene sequences offers a reliable identification system for nearly all species of the genus Lactobacillus. The pheS and rpoA gene sequences provide a powerful tool for the detection of potential novel Lactobacillus species and synonymous taxa. In conclusion, the pheS and rpoA gene sequences can be used as alternative genomic markers to 16S rRNA gene sequences and have a higher discriminatory power for reliable identification of species of the genus Lactobacillus.
KeywordMeSH Terms
5. O' Donnell  MM, Harris  HM, Lynch  DB, Ross  RP, O'Toole  PW,     ( 2015 )

Lactobacillus ruminis strains cluster according to their mammalian gut source.

BMC microbiology 15 (N/A)
PMID : 25879663  :   DOI  :   10.1186/s12866-015-0403-y     PMC  :   PMC4393605    
Abstract >>
Lactobacillus ruminis is a motile Lactobacillus that is autochthonous to the human gut, and which may also be isolated from other mammals. Detailed characterization of L. ruminis has previously been restricted to strains of human and bovine origin. We therefore sought to expand our bio-bank of strains to identify and characterise isolates of porcine and equine origin by comparative genomics. We isolated five strains from the faeces of horses and two strains from pigs, and compared their motility, biochemistry and genetic relatedness to six human isolates and three bovine isolates including the type strain 27780(T). Multilocus sequence typing analysis based on concatenated sequence data for six individual loci separated the 16 L. ruminis strains into three clades concordant with human, bovine or porcine, and equine sources. Sequencing the genomes of four additional strains of human, bovine, equine and porcine origin revealed a high level of genome synteny, independent of the source animal. Analysis of carbohydrate utilization, stress survival and technological robustness in a combined panel of sixteen L. ruminis isolates identified strains with optimal survival characteristics suitable for future investigation as candidate probiotics. Under laboratory conditions, six human isolates of L. ruminis tested were aflagellate and non-motile, whereas all 10 strains of bovine, equine and porcine origin were motile. Interestingly the equine and porcine strains were hyper-flagellated compared to bovine isolates, and this hyper-flagellate phenotype correlated with the ability to swarm on solid medium containing up to 1.8% agar. Analysis by RNA sequencing and qRT-PCR identified genes for the biosynthesis of flagella, genes for carbohydrate metabolism and genes of unknown function that were differentially expressed in swarming cells of an equine isolate of L. ruminis. We suggest that Lactobacillus ruminis isolates have potential to be used in the functional food industry. We have also identified a MLST scheme able to distinguish between strains of L. ruminis of different origin. Genes for non-digestible oligosaccharide metabolism were identified with a putative role in swarming behaviour.
KeywordMeSH Terms
Genome, Bacterial
Genotype
Multigene Family

331, Shih-Pin Rd., Hsinchu 30062, Taiwan

Phone: +886-3-5223191

E-mail: bcrcweb@firdi.org.tw

web maintainance: +886-3-5223191 ext 593

Copyright © 2018.BCRC All rights reserved.The duplication or use of information and data such as texts or images or any linkage the website at the "bcrc.firdi.org.tw" is only permitted with the indication of the source or with prior approval by the BCRC(Bioresource Collection and Research Center).