BCRC Strain Collection Catalog & Shopping Cart

  Home / BCRC Content / 81047 / 

Return

  Research Article

The information shown in this page was generated using the cross-referenced linkage within public domain database between their strains and BCRC related strains. Usually the information provided from public domain databases varies with diffent confidences and errors, BCRC provides the related information here at best effort, but BCRC doesn't take the responsibility about the correctness of the information provided here.

1. Charrier  C, Duncan  GJ, Reid  MD, Rucklidge  GJ, Henderson  D, Young  P, Russell  VJ, Aminov  RI, Flint  HJ, Louis  P,     ( 2006 )

A novel class of CoA-transferase involved in short-chain fatty acid metabolism in butyrate-producing human colonic bacteria.

Microbiology (Reading, England) 152 (Pt 1)
PMID : 16385128  :   DOI  :   10.1099/mic.0.28412-0    
Abstract >>
Bacterial butyryl-CoA CoA-transferase activity plays a key role in butyrate formation in the human colon, but the enzyme and corresponding gene responsible for this activity have not previously been identified. A novel CoA-transferase gene is described from the colonic bacterium Roseburia sp. A2-183, with similarity to acetyl-CoA hydrolase as well as 4-hydroxybutyrate CoA-transferase sequences. The gene product, overexpressed in an Escherichia coli lysate, showed activity with butyryl-CoA and to a lesser degree propionyl-CoA in the presence of acetate. Butyrate, propionate, isobutyrate and valerate competed with acetate as the co-substrate. Despite the sequence similarity to 4-hydroxybutyrate CoA-transferases, 4-hydroxybutyrate did not compete with acetate as the co-substrate. Thus the CoA-transferase preferentially uses butyryl-CoA as substrate. Similar genes were identified in other butyrate-producing human gut bacteria from clostridial clusters IV and XIVa, while other candidate CoA-transferases for butyrate formation could not be detected in Roseburia sp. A2-183. This suggests strongly that the newly identified group of CoA-transferases described here plays a key role in butyrate formation in the human colon.
KeywordMeSH Terms
2. Louis  P, Young  P, Holtrop  G, Flint  HJ,     ( 2010 )

Diversity of human colonic butyrate-producing bacteria revealed by analysis of the butyryl-CoA:acetate CoA-transferase gene.

Environmental microbiology 12 (2)
PMID : 19807780  :   DOI  :   10.1111/j.1462-2920.2009.02066.x    
Abstract >>
Butyrate-producing bacteria play an important role in the human colon, supplying energy to the gut epithelium and regulating host cell responses. In order to explore the diversity and culturability of this functional group, we designed degenerate primers to amplify butyryl-CoA:acetate CoA-transferase sequences from faecal samples provided by 10 healthy volunteers. Eighty-eight per cent of amplified sequences showed >98% DNA sequence identity to CoA-transferases from cultured butyrate-producing bacteria, and these fell into 12 operational taxonomic units (OTUs). The four most prevalent OTUs corresponded to Eubacterium rectale, Roseburia faecis, Eubacterium hallii and an unnamed cultured species SS2/1. The remaining 12% of sequences, however, belonged to 20 OTUs that are assumed to come from uncultured butyrate-producing strains. Samples taken after ingestion of inulin showed significant (P=0.019) increases in Faecalibacterium prausnitzii. Because several of the dominant butyrate producers differ in their DNA % G+C content, analysis of thermal melt curves obtained for PCR amplicons of the butyryl-CoA:acetate CoA-transferase gene provides a convenient and rapid qualitative assessment of the major butyrate producing groups present in a given sample. This type of analysis therefore provides an excellent source of information on functionally important groups within the colonic microbial community.
KeywordMeSH Terms
3. Brown  CT, Olm  MR, Thomas  BC, Banfield  JF,     ( 2016 )

Measurement of bacterial replication rates in microbial communities.

Nature biotechnology 34 (12)
PMID : 27819664  :   DOI  :   10.1038/nbt.3704     PMC  :   PMC5538567    
Abstract >>
Culture-independent microbiome studies have increased our understanding of the complexity and metabolic potential of microbial communities. However, to understand the contribution of individual microbiome members to community functions, it is important to determine which bacteria are actively replicating. We developed an algorithm, iRep, that uses draft-quality genome sequences and single time-point metagenome sequencing to infer microbial population replication rates. The algorithm calculates an index of replication (iRep) based on the sequencing coverage trend that results from bi-directional genome replication from a single origin of replication. We apply this method to show that microbial replication rates increase after antibiotic administration in human infants. We also show that uncultivated, groundwater-associated, Candidate Phyla Radiation bacteria only rarely replicate quickly in subsurface communities undergoing substantial changes in geochemistry. Our method can be applied to any genome-resolved microbiome study to track organism responses to varying conditions, identify actively growing populations and measure replication rates for use in modeling studies.
KeywordMeSH Terms
Algorithms
4. Jiang  X, Hall  AB, Arthur  TD, Plichta  DR, Covington  CT, Poyet  M, Crothers  J, Moses  PL, Tolonen  AC, Vlamakis  H, Alm  EJ, Xavier  RJ,     ( 2019 )

Invertible promoters mediate bacterial phase variation, antibiotic resistance, and host adaptation in the gut.

Science (New York, N.Y.) 363 (6423)
PMID : 30630933  :   DOI  :   10.1126/science.aau5238     PMC  :   PMC6543533    
Abstract >>
Phase variation, the reversible alternation between genetic states, enables infection by pathogens and colonization by commensals. However, the diversity of phase variation remains underexplored. We developed the PhaseFinder algorithm to quantify DNA inversion-mediated phase variation. A systematic search of 54,875 bacterial genomes identified 4686 intergenic invertible DNA regions (invertons), revealing an enrichment in host-associated bacteria. Invertons containing promoters often regulate extracellular products, underscoring the importance of surface diversity for gut colonization. We found invertons containing promoters regulating antibiotic resistance genes that shift to the ON orientation after antibiotic treatment in human metagenomic data and in vitro, thereby mitigating the cost of antibiotic resistance. We observed that the orientations of some invertons diverge after fecal microbiota transplant, potentially as a result of individual-specific selective forces.
KeywordMeSH Terms
Gastrointestinal Microbiome
Promoter Regions, Genetic
5. Benevides  L, Burman  S, Martin  R, Robert  V, Thomas  M, Miquel  S, Chain  F, Sokol  H, Bermudez-Humaran  LG, Morrison  M, Langella  P, Azevedo  VA, Chatel  JM, Soares  S,     ( 2017 )

New Insights into the Diversity of the Genus Faecalibacterium.

Frontiers in microbiology 8 (N/A)
PMID : 28970823  :   DOI  :   10.3389/fmicb.2017.01790     PMC  :   PMC5609107    
Abstract >>
Faecalibacterium prausnitzii is a commensal bacterium, ubiquitous in the gastrointestinal tracts of animals and humans. This species is a functionally important member of the microbiota and studies suggest it has an impact on the physiology and health of the host. F. prausnitzii is the only identified species in the genus Faecalibacterium, but a recent study clustered strains of this species in two different phylogroups. Here, we propose the existence of distinct species in this genus through the use of comparative genomics. Briefly, we performed analyses of 16S rRNA gene phylogeny, phylogenomics, whole genome Multi-Locus Sequence Typing (wgMLST), Average Nucleotide Identity (ANI), gene synteny, and pangenome to better elucidate the phylogenetic relationships among strains of Faecalibacterium. For this, we used 12 newly sequenced, assembled, and curated genomes of F. prausnitzii, which were isolated from feces of healthy volunteers from France and Australia, and combined these with published data from 5 strains downloaded from public databases. The phylogenetic analysis of the 16S rRNA sequences, together with the wgMLST profiles and a phylogenomic tree based on comparisons of genome similarity, all supported the clustering of Faecalibacterium strains in different genospecies. Additionally, the global analysis of gene synteny among all strains showed a highly fragmented profile, whereas the intra-cluster analyses revealed larger and more conserved collinear blocks. Finally, ANI analysis substantiated the presence of three distinct clusters-A, B, and C-composed of five, four, and four strains, respectively. The pangenome analysis of each cluster corroborated the classification of these clusters into three distinct species, each containing less variability than that found within the global pangenome of all strains. Here, we propose that comparison of pangenome subsets and their associated �\ values may be used as an alternative approach, together with ANI, in the in silico classification of new species. Altogether, our results provide evidence not only for the reconsideration of the phylogenetic and genomic relatedness among strains currently assigned to F. prausnitzii, but also the need for lineage (strain-based) differentiation of this taxon to better define how specific members might be associated with positive or negative host interactions.
KeywordMeSH Terms
16S rRNA gene phylogeny
Average Nucleotide Identity
Faecalibacterium prausnitzii
gene synteny
genome sequencing
new species
pangenome
phylogenomic analysis

331, Shih-Pin Rd., Hsinchu 30062, Taiwan

Phone: +886-3-5223191

E-mail: bcrcweb@firdi.org.tw

web maintainance: +886-3-5223191 ext 593

Copyright © 2018.BCRC All rights reserved.The duplication or use of information and data such as texts or images or any linkage the website at the "bcrc.firdi.org.tw" is only permitted with the indication of the source or with prior approval by the BCRC(Bioresource Collection and Research Center).